1
|
He S, Ding L, Li K, Hu H, Ye L, Ren H. Comparative study of activated sludge with different individual nitrogen sources at a low temperature: Effluent dissolved organic nitrogen compositions, metagenomic and microbial community. BIORESOURCE TECHNOLOGY 2018; 247:915-923. [PMID: 30060430 DOI: 10.1016/j.biortech.2017.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/08/2023]
Abstract
The objective of this study was to explore nitrogen removal, especially effluent dissolved organic nitrogen (DON) composition, relative genes and microbial community structures with four individual nitrogen sources at 5°C. Results show that effluent DON did not have dependent relationship with the TN removal rate (urea>ammonia chloride>L-Alanine>D-Alanine). With the same influent TN, the highest effluent DON was formed with urea; the lowest DON was fed with ammonia chloride. The main DON composition was the product of cell metabolism excluding urea, rather than the original substrate. Glutamic acid synthesizing process was of great importance to DON accumulation at 5°C. The nitrogen source type was important to the diversity and heterogeneity of the nitrogen removal genes. Bacterial population structure using redundancy analysis (RDA) showed Simplicispira occupied a higher abundance remarkably in the reactors feeding with urea, and Dyadobacter occupied higher feeding with l-Alanine.
Collapse
Affiliation(s)
- Su He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
2
|
Chen M, Wang W, Feng Y, Zhu X, Zhou H, Tan Z, Li X. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02. BIORESOURCE TECHNOLOGY 2014; 167:456-461. [PMID: 25006021 DOI: 10.1016/j.biortech.2014.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
To give reference for the application of heterotrophic nitrification-aerobic denitrification bacteria in actual wastewater treatment, the impact resistance of extreme pH, low temperature, heavy metals and high salinity on ammonia removal by a typical heterotrophic nitrifying-aerobic denitrifying bacterium Aeromonas sp. HN-02 was investigated. The results showed that HN-02 demonstrated strong acid- and alkali-resistance. In addition, it remained active at 5°C, and the removal rates of ammonia and COD were 0.90 mg L(-1)h(-1) and 22.34 mg L(-1)h(-1), respectively. Under the same extent of immediate temperature drop, the temperature correction coefficients of ammonia, COD removal rates and cell growth rate were close. Moreover, HN-02 could survive in the solution containing 0.5 mg L(-1) Cu(2+) or 8 mg L(-1) Zn(2+), or 0.5 mg L(-1) of equivalent Cu(2+)-Zn(2+). Furthermore, efficient ammonia removal was retained at salinity below 20 g L(-1), thus it could be identified as a halotolerant bacterium. At last, stronger stress resulted in higher ΔCOD/ΔTN ratio.
Collapse
Affiliation(s)
- Maoxia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Wenchao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Ye Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiaohua Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Houzhen Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhouliang Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Xudong Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
3
|
Takahashi M, Yamada T, Tanno M, Tsuji H, Hiraishi A. Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly ( L-lactic acid) as the Solid Substrate. Microbes Environ 2011; 26:212-9. [DOI: 10.1264/jsme2.me11107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Masaaki Takahashi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Takeshi Yamada
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Motohiro Tanno
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Hideto Tsuji
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| |
Collapse
|