1
|
Sugimoto T, Yoshikura R, Maezawa T, Mekata K, Ueda Y, Kawaguchi H, Izumi S. Effects of the walking independence on lower extremity and trunk muscle activity during straight-leg raising following incomplete cervical cord injury. Sci Rep 2024; 14:4363. [PMID: 38388829 PMCID: PMC10883988 DOI: 10.1038/s41598-024-55039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
The purpose of this study was to compare the acceleration and surface electromyography (EMG) of the lower extremity and trunk muscles during straight-leg raising (SLR) in patients with incomplete cervical cord injury according to their levels of walking independence. Twenty-four patients were measured acceleration and EMG during SLR held for 10 s. Data were analyzed separately for the dominant and nondominant sides and compared between the nonindependent (NI) and independent (ID) groups based on their levels of walking independence. Frequency analysis of the EMG showed that the high-frequency (HF) band of the contralateral biceps femoris (BF) in the ID group and bands below the medium-frequency (MF) of the BF and the HF and MF bands of the rectus abdominis in the NI group were significantly higher during dominant and nondominant SLR. During the nondominant SLR, the low-frequency band of the internal oblique and the MF band of the external oblique were significantly higher in the NI group. The ID group mobilized muscle fiber type 2 of the BF, whereas the NI group mobilized type 1 of the BF and types 2 and 1 of the trunk muscles to stabilize the pelvis. This result was more pronounced during the nondominant SLR.
Collapse
Affiliation(s)
- Tatsuya Sugimoto
- Department of Rehabilitation, Japanese Red Cross Kobe Hospital, Kobe, Japan.
- Graduate School of System Informatics, Kobe University, Kobe, Japan.
| | - Ryoto Yoshikura
- Graduate School of Science Technology and Innovation, Kobe University, Kobe, Japan
| | - Toshiyuki Maezawa
- Department of Rehabilitation, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Kojiro Mekata
- Shijonawate Gakuen University Faculty of Rehabilitation, Osaka, Japan
| | - Yuya Ueda
- Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiroshi Kawaguchi
- Graduate School of Science Technology and Innovation, Kobe University, Kobe, Japan
| | - Shintaro Izumi
- Graduate School of Science Technology and Innovation, Kobe University, Kobe, Japan
- Osaka Heat Cool Inc., Osaka, Japan
| |
Collapse
|
2
|
Benton AM, Amiri P, Henson DP, Sivapuratharasu B, Mcgregor AH, Bull AMJ. Characterization of muscle recruitment during gait of bilateral transfemoral and through-knee persons with limb loss. Front Bioeng Biotechnol 2023; 11:1128528. [PMID: 37082215 PMCID: PMC10110921 DOI: 10.3389/fbioe.2023.1128528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction: Due to loss in musculoskeletal capacity, there is an increased burden on the residual limbs of bilateral transfemoral and through-knee persons with limb loss. This reduced capacity is associated with an increased cost of walking that is detrimental to functionality. Compensatory gait strategies are adopted by this population. However, how these strategies relate to specific muscle recruitment is not known. The primary aim of this study is to characterize muscle recruitment during gait of this population. The secondary aim is to assess whether the measured kinematics can be actuated when the endurance of specific muscles is reduced and if this is the case, which alternative muscles facilitate this. Methods: 3D gait data and high-resolution magnetic resonance images were acquired from six bilateral transfemoral and through-knee persons with limb loss. Subject-specific anatomical muscle models were developed for each participant, and a validated musculoskeletal model was used to quantify muscle forces in two conditions: during normal gait (baseline) and when muscles, which were identified as functioning above a "healthy" level at baseline, have a reduced magnitude of maximum force capacity (reduced endurance simulation). To test the hypothesis that there are differences in muscle forces between the baseline trials and the simulations with reduced muscular endurance, a Bonferroni corrected two-way ANOVA with repeated measures was completed between the two states. Results: The baseline analysis showed that the hip flexors experience relatively high muscle activations during gait. The reduced endurance simulation found two scenarios. First, for 5 out of the 12 simulations, the baseline kinematics could not be reproduced with the reduced muscular capacity. Second, for 7 out of 12 cases where the baseline kinematics were achieved, this was possible with compensatory increased activation of some muscles with similar functions (p ≤ 0.003). Discussion: Evidently, due to the loss of the ankle plantar flexors, gait imposes a high demand on the flexor muscle group of the residual limb. This study highlights how the elevated cost of gait in this population manifests in muscle recruitment. To enhance functionality, it is critical to consider the mechanical demand on the hip flexors and to develop rehabilitation interventions accordingly.
Collapse
Affiliation(s)
- Alice M. Benton
- Department of Bioengineering, Imperial College London, London, United Kingdom
- *Correspondence: Alice M. Benton,
| | - Pouya Amiri
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - David P. Henson
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Biranavan Sivapuratharasu
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Alison H. Mcgregor
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Göpfert B, Schärer C, Tacchelli L, Gross M, Lüthy F, Hübner K. Frequency Shifts in Muscle Activation during Static Strength Elements on the Rings before and after an Eccentric Training Intervention in Male Gymnasts. J Funct Morphol Kinesiol 2022; 7:jfmk7010028. [PMID: 35323611 PMCID: PMC8956077 DOI: 10.3390/jfmk7010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
During ring performance in men's gymnastics, static strength elements require a high level of maximal muscular strength. The aim of the study was to analyze the effect of a four-week eccentric-isokinetic training intervention in the frequency spectra of the wavelet-transformed electromyogram (EMG) during the two static strength elements, the swallow and support scale, in different time intervals during the performance. The gymnasts performed an instrumented movement analysis on the rings, once before the intervention and twice after. For both elements, the results showed a lower congruence in the correlation of the frequency spectra between the first and the last 0.5 s interval than between the first and second 0.5 s intervals, which was indicated by a shift toward the predominant frequency around the wavelet with a center frequency of 62 Hz (Wavelet W10). Furthermore, in both elements, there was a significant increase in the congruence of the frequency spectra after the intervention between the first and second 0.5 s intervals, but not between the first and last ones. In conclusion, the EMG wavelet spectra presented changes corresponding to the performance gain with the eccentric training intervention, and showed the frequency shift toward a predominant frequency due to acute muscular fatigue.
Collapse
Affiliation(s)
- Beat Göpfert
- Department Biomedical Engineering (DBE), University of Basel, 4001 Basel, Switzerland
- Correspondence:
| | - Christoph Schärer
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland; (C.S.); (M.G.); (F.L.); (K.H.)
| | - Lisa Tacchelli
- Movement and Sport Science, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Micah Gross
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland; (C.S.); (M.G.); (F.L.); (K.H.)
| | - Fabian Lüthy
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland; (C.S.); (M.G.); (F.L.); (K.H.)
| | - Klaus Hübner
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland; (C.S.); (M.G.); (F.L.); (K.H.)
| |
Collapse
|
4
|
Fidalgo-Herrera A, Miangolarra-Page JC, Carratalá-Tejada M. Electromyographic traces of motor unit synchronization of fatigued lower limb muscles during gait. Hum Mov Sci 2020; 75:102750. [PMID: 33373857 DOI: 10.1016/j.humov.2020.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The study of the signal in the frequency domain has shown to be a good tool to identify muscular fatigue. Previous research has shown that the low frequency band and 40 Hz frequency band increase their relative intensity with the onset of fatigue. These findings were obtained in rectus femoris, but the behaviours of other muscles of the lower limb are unknown. In this article we explored the changes in the low frequency and 40 Hz frequency band of lower limb muscles with respect to fatigue. METHODS Thirty healthy subjects were recruited to analyse the electromyography (EMG) of biceps femoris, tibialis anterior and gastrocnemius medialis and lateralis of both legs during gait. Four two-minutes walks at a self-selected speed were recorded, the first two walks with a normal muscular function and the last two walks after a fatigue protocol. All the signals were decomposed using wavelet transformations. The signals were normalized in time and spectral intensities normalized to the sum of intensities in the frequency domain. Two frequency bands were studied in each walk: the 40-Hz (34-53 Hz) and the low frequency (< 25 Hz) bands. A ratio of the spectral intensities of those frequency bands at each walk was obtained by dividing the 40-Hz frequency band spectral intensity by the low frequency band spectral intensity. Statistical parametric mapping techniques were used to compare the ratios of the prefatigue walks against the postfatigue walks. RESULTS The results of the Statistical Non-Parametric Mapping (SnPM) analysis of all muscles depict a higher relative spectral intensity in the low frequency band in the comparison of fatigue versus prefatigue recordings except for the right gastrocnemius lateralis. The critical thresholds F* were exceeded by multiple suprathreshold clusters with p values <0.05, showing that the low frequency band increased its relative spectral intensity in the case of fatigue. CONCLUSION The obtained results suggest that the low frequency band increases its relative spectral intensity in all the studied muscles when fatigue onsets. This increase in relative spectral intensity may be linked to an increase in motor unit synchronization promoted by the central nervous system to ensure good motor control.
Collapse
Affiliation(s)
- A Fidalgo-Herrera
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain.
| | - J C Miangolarra-Page
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain; Fuenlabrada's Clinical University Hospital, Fuenalbrada, Camino del Molino, 2, Madrid, Spain.
| | - M Carratalá-Tejada
- LAMBECOM, Universidad Rey Juan Carlos, Alcorcón, calle Atenas S/N, Madrid, Spain.
| |
Collapse
|
5
|
Garcia-Retortillo S, Rizzo R, Wang JWJL, Sitges C, Ivanov PC. Universal spectral profile and dynamic evolution of muscle activation: a hallmark of muscle type and physiological state. J Appl Physiol (1985) 2020; 129:419-441. [PMID: 32673157 DOI: 10.1152/japplphysiol.00385.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The skeletal muscle is an integrated multicomponent system with complex dynamics of continuous myoelectrical activation of various muscle types across time scales to facilitate muscle coordination among units and adaptation to physiological states. To understand the multiscale dynamics of neuromuscular activity, we investigated spectral characteristics of different muscle types across time scales and their evolution with physiological states. We hypothesized that each muscle type is characterized by a specific spectral profile, reflecting muscle composition and function, that remains invariant over time scales and is universal across subjects. Furthermore, we hypothesized that the myoelectrical activation and corresponding spectral profile during certain movements exhibit an evolution path in time that is unique for each muscle type and reflects responses in muscle dynamics to exercise, fatigue, and aging. To probe the multiscale mechanism of neuromuscular regulation, we developed a novel protocol of repeated squat exercise segments, each performed until exhaustion, and we analyzed differentiated spectral power responses over a range of frequency bands for leg and back muscle activation in young and old subjects. We found that leg and back muscle activation is characterized by muscle-specific spectral profiles, with differentiated frequency band contribution, and a muscle-specific evolution path in response to fatigue and aging that is universal across subjects in each age group. The uncovered universality among subjects in the spectral profile of each muscle at a given physiological state, as well as the robustness in the evolution of these profiles over a range of time scales and states, reveals a previously unrecognized multiscale mechanism underlying the differentiated response of distinct muscle types to exercise-induced fatigue and aging.NEW & NOTEWORTHY To understand coordinated function of distinct fibers in a muscle, we investigated spectral dynamics of muscle activation during maximal exercise across a range of frequency bands and time scales of observation. We discovered a spectral profile that is specific for each muscle type, robust at short, intermediate, and large time scales, universal across subjects, and characterized by a muscle-specific evolution path with accumulation of fatigue and aging, indicating a previously unrecognized multiscale mechanism of muscle tone regulation.
Collapse
Affiliation(s)
- Sergi Garcia-Retortillo
- University School of Health and Sport, University of Girona, Salt, Spain.,Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts.,Complex Systems in Sport, INEFC Universitat de Barcelona, Barcelona, Spain
| | - Rossella Rizzo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts.,Evolutionary Systems Group Laboratory, Department of Physics, University of Calabria, Arcavacata di Rende, Italy
| | - Jilin W J L Wang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts
| | - Carol Sitges
- University of Balearic Islands, Department of Psychology, Research Institute of Health Sciences and Health Research Institute of the Balearic Islands, Palma, Spain
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts.,Harvard Medical School and Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|