1
|
Gea-Izquierdo E, Gil-de-Miguel Á, Rodríguez-Caravaca G. Legionella pneumophila Risk from Air–Water Cooling Units Regarding Pipe Material and Type of Water. Microorganisms 2023; 11:microorganisms11030638. [PMID: 36985212 PMCID: PMC10053303 DOI: 10.3390/microorganisms11030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Legionellosis is a respiratory disease related to environmental health. There have been manifold studies of pipe materials, risk installations and legionellosis without considering the type of transferred water. The objective of this study was to determine the potential development of the causative agent Legionella pneumophila regarding air–water cooling units, legislative compliance, pipe material and type of water. Forty-four hotel units in Andalusia (Spain) were analysed with respect to compliance with Spanish health legislation for the prevention of legionellosis. The chi-square test was used to explain the relationship between material–water and legislative compliance, and a biplot of the first two factors was generated. Multiple correspondence analysis (MCA) was performed on the type of equipment, legislative compliance, pipe material and type of water, and graphs of cases were constructed by adding confidence ellipses by categories of the variables. Pipe material–type of water (p value = 0.29; p < 0.05) and legislative compliance were not associated (p value = 0.15; p < 0.05). Iron, stainless steel, and recycled and well water contributed the most to the biplot. MCA showed a global pattern in which lead, iron and polyethylene were well represented. Confidence ellipses around categories indicated significant differences among categories. Compliance with Spanish health legislation regarding the prevention and control of legionellosis linked to pipe material and type of water was not observed.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Maria Zambrano Program, European Union, Spain
- Correspondence:
| | - Ángel Gil-de-Miguel
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Preventive Medicine, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| |
Collapse
|
2
|
Salambanga FRD, Wingert L, Valois I, Lacombe N, Gouin F, Trépanier J, Debia M, Soszczyńska E, Twarużek M, Kosicki R, Dias M, Viegas S, Caetano L, Viegas C, Marchand G. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. ENVIRONMENTAL RESEARCH 2022; 212:113597. [PMID: 35660405 DOI: 10.1016/j.envres.2022.113597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.
Collapse
Affiliation(s)
- Fabiola R D Salambanga
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Loïc Wingert
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Nancy Lacombe
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - François Gouin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Julien Trépanier
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Liliana Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Geneviève Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada.
| |
Collapse
|
3
|
van Heijnsbergen E, Schalk JAC, Euser SM, Brandsema PS, den Boer JW, de Roda Husman AM. Confirmed and Potential Sources of Legionella Reviewed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4797-815. [PMID: 25774976 DOI: 10.1021/acs.est.5b00142] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other than drinking water distribution systems. Levels of evidence were developed to discriminate between potential and confirmed sources of Legionella. A total of 17 systems and matrices could be classified as confirmed sources of Legionella. Many other man-made systems or natural matrices were not classified as a confirmed source, since either no patients were linked to these reservoirs or the supporting evidence was weak. However, these systems or matrices could play an important role in the transmission of infectious Legionella bacteria; they might not yet be considered in source investigations, resulting in an underestimation of their importance. To optimize source investigations it is important to have knowledge about all the (potential) sources of Legionella. Further research is needed to unravel what the contribution is of each confirmed source, and possibly also potential sources, to the LD disease burden.
Collapse
Affiliation(s)
- Eri van Heijnsbergen
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Johanna A C Schalk
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Sjoerd M Euser
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Petra S Brandsema
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Jeroen W den Boer
- ‡Regional Public Health Laboratory Kennemerland, Haarlem, Boerhaavelaan 26, 2035 RC Haarlem, The Netherlands
| | - Ana Maria de Roda Husman
- †National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- §Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
4
|
Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor. Appl Environ Microbiol 2014; 80:6031-6. [PMID: 25063652 DOI: 10.1128/aem.01275-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources.
Collapse
|