1
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. G3 (BETHESDA, MD.) 2024; 14:jkae091. [PMID: 38696662 PMCID: PMC11228837 DOI: 10.1093/g3journal/jkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Aspergillus fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related nonpathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the noncoding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. In general, A. fumigatus noncoding regions showed higher levels of sequence variation compared with their corresponding protein-coding regions. Focusing on 2,482 genes whose protein-coding sequence identity scores ranged between 75 and 99%, we identified 478 total genes with signatures of positive selection only in their noncoding regions and 65 total genes with signatures only in their protein-coding regions. Twenty-eight of the 478 noncoding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Noncoding region variation between A. fumigatus strains included single-nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that noncoding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular and Cell Biology, Howards Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of non-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574724. [PMID: 38260267 PMCID: PMC10802510 DOI: 10.1101/2024.01.08.574724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A.fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related non-pathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the non-coding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. A. fumigatus non-coding regions showed higher levels of sequence variation compared to their corresponding protein-coding regions. Specifically, we found that 1,274 non-coding regions exhibited <75% nucleotide sequence similarity (compared to 928 protein-coding regions) and 3,721 non-coding regions exhibited between 75% and 99% similarity (compared to 2,482 protein-coding regions) across strains. Only 817 non-coding regions exhibited ≥99% sequence similarity compared to 2,402 protein-coding regions. By examining 2,482 genes whose protein-coding sequence identity scores ranged between 75% and 99%, we identified 478 total genes with signatures of positive selection only in their non-coding regions and 65 total genes with signatures only in their protein-coding regions. 28 of the 478 non-coding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Non-coding region variation between A. fumigatus strains included single nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that non-coding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
El Jaddaoui I, Ghazal H, Bennett JW. Mold in Paradise: A Review of Fungi Found in Libraries. J Fungi (Basel) 2023; 9:1061. [PMID: 37998867 PMCID: PMC10672585 DOI: 10.3390/jof9111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Libraries contain a large amount of organic material, frequently stored with inadequate climate control; thus, mold growth represents a considerable threat to library buildings and their contents. In this essay, we review published papers that have isolated microscopic fungi from library books, shelving, walls, and other surfaces, as well as from air samples within library buildings. Our literature search found 54 published studies about mold in libraries, 53 of which identified fungi to genus and/or species. In 28 of the 53 studies, Aspergillus was the single most common genus isolated from libraries. Most of these studies used traditional culture and microscopic methods for identifying the fungi. Mold damage to books and archival holdings causes biodeterioration of valuable educational and cultural resources. Exposure to molds may also be correlated with negative health effects in both patrons and librarians, so there are legitimate concerns about the dangers of contact with high levels of fungal contamination. Microbiologists are frequently called upon to help librarians after flooding and other events that bring water into library settings. This review can help guide microbiologists to choose appropriate protocols for the isolation and identification of mold in libraries and be a resource for librarians who are not usually trained in building science to manage the threat molds can pose to library holdings.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hassan Ghazal
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences, Casablanca 82403, Morocco;
- Royal Institute of Sports, Royal Institute for Managerial Training in Youth and Sport, Department of Sports Sciences, Laboratory of Sports Sciences and Performance Optimization, Salé 10102, Morocco
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
4
|
Brown A, Mead ME, Steenwyk JL, Goldman GH, Rokas A. Extensive non-coding sequence divergence between the major human pathogen Aspergillus fumigatus and its relatives. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:802494. [PMID: 36866034 PMCID: PMC9977105 DOI: 10.3389/ffunb.2022.802494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022]
Abstract
Invasive aspergillosis is a deadly fungal disease; more than 400,000 patients are infected worldwide each year and the mortality rate can be as high as 50-95%. Of the ~450 species in the genus Aspergillus only a few are known to be clinically relevant, with the major pathogen Aspergillus fumigatus being responsible for ~50% of all invasive mold infections. Genomic comparisons between A. fumigatus and other Aspergillus species have historically focused on protein-coding regions. However, most A. fumigatus genes, including those that modulate its virulence, are also present in other pathogenic and non-pathogenic closely related species. Our hypothesis is that differential gene regulation - mediated through the non-coding regions upstream of genes' first codon - contributes to A. fumigatus pathogenicity. To begin testing this, we compared non-coding regions upstream of the first codon of single-copy orthologous genes from the two A. fumigatus reference strains Af293 and A1163 and eight closely related Aspergillus section Fumigati species. We found that these non-coding regions showed extensive sequence variation and lack of homology across species. By examining the evolutionary rates of both protein-coding and non-coding regions in a subset of orthologous genes with highly conserved non-coding regions across the phylogeny, we identified 418 genes, including 25 genes known to modulate A. fumigatus virulence, whose non-coding regions exhibit a different rate of evolution in A. fumigatus. Examination of sequence alignments of these non-coding regions revealed numerous instances of insertions, deletions, and other types of mutations of at least a few nucleotides in A. fumigatus compared to its close relatives. These results show that closely related Aspergillus species that vary greatly in their pathogenicity exhibit extensive non-coding sequence variation and identify numerous changes in non-coding regions of A. fumigatus genes known to contribute to virulence.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Hughes KM, Price D, Torriero AAJ, Symonds MRE, Suphioglu C. Impact of Fungal Spores on Asthma Prevalence and Hospitalization. Int J Mol Sci 2022; 23:ijms23084313. [PMID: 35457129 PMCID: PMC9025873 DOI: 10.3390/ijms23084313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Despite making up a significant proportion of airborne allergens, the relationship between fungal spores and asthma is not fully explored. Only 80 taxa of fungi have so far been observed to exacerbate respiratory presentations, with Cladosporium spp., Aspergillus spp., Penicillium spp., and Alternaria spp. found to comprise the predominant allergenic airborne spores. Fungal spores have been found in indoor environments, such as hospitals and housing due to poor ventilation. Meanwhile, outdoor fungal spores exhibit greater diversity, and higher abundance and have been associated with hospitalizations from acute asthma presentations. In addition, fungal spores may be the underlying, and perhaps the “missing link”, factor influencing the heightened rate of asthma presentations during epidemic thunderstorm asthma events. To improve our knowledge gap on fungal spores, airborne allergen monitoring must be improved to include not only dominant allergenic fungi but also provide real-time data to accurately and quickly warn the general public. Such data will help prevent future asthma exacerbations and thus save lives. In this review, we examine the health risks of prominent allergenic fungal taxa, the factors influencing spore dispersal and distribution, and why improvements should be made to current sampling methods for public health and wellbeing.
Collapse
Affiliation(s)
- Kira M. Hughes
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; (K.M.H.); (D.P.)
- Deakin AIRwatch Pollen and Spore Counting and Forecasting Facility, Deakin University, Burwood, VIC 3125, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - Dwan Price
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; (K.M.H.); (D.P.)
- Deakin AIRwatch Pollen and Spore Counting and Forecasting Facility, Deakin University, Burwood, VIC 3125, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
- COVID-19 Response, Department of Health, 50 Lonsdale Street, Melbourne, VIC 3000, Australia
| | - Angel A. J. Torriero
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia;
| | - Matthew R. E. Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia;
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; (K.M.H.); (D.P.)
- Deakin AIRwatch Pollen and Spore Counting and Forecasting Facility, Deakin University, Burwood, VIC 3125, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
- Correspondence: ; Tel.: +61-3-5227-2886
| |
Collapse
|
6
|
Vélez-Torres LN, Bolaños-Rosero B, Godoy-Vitorino F, Rivera-Mariani FE, Maestre JP, Kinney K, Cavallin H. Hurricane María drives increased indoor proliferation of filamentous fungi in San Juan, Puerto Rico: a two-year culture-based approach. PeerJ 2022; 10:e12730. [PMID: 35261816 PMCID: PMC8898552 DOI: 10.7717/peerj.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/11/2021] [Indexed: 01/07/2023] Open
Abstract
Extensive flooding caused by Hurricane María in Puerto Rico (PR) created favorable conditions for indoor growth of filamentous fungi. These conditions represent a public health concern as contamination by environmental fungi is associated with a higher prevalence of inflammatory respiratory conditions. This work compares culturable fungal spore communities present in homes that sustained water damage after Hurricane María to those present in dry, non-flooded homes. We collected air samples from 50 houses in a neighborhood in San Juan, PR, 12 and 22 months after Hurricane María. Self-reported data was used to classify the homes as flooded, water-damage or dry non-flooded. Fungi abundances, composition and diversity were analyzed by culturing on two media. Our results showed no significant differences in indoor fungal concentrations (CFU/m3) one year after the Hurricane in both culture media studied (MEA and G25N). During the second sampling period fungal levels were 2.7 times higher in previously flooded homes (Median = 758) when compared to dry homes (Median = 283), (p-value < 0.005). Fungal profiles showed enrichment of Aspergillus species inside flooded homes compared to outdoor samples during the first sampling period (FDR-adjusted p-value = 0.05). In contrast, 22 months after the storm, indoor fungal composition consisted primarily of non-sporulated fungi, most likely basidiospores, which are characteristic of the outdoor air in PR. Together, this data highlights that homes that suffered water damage not only have higher indoor proliferation of filamentous fungi, but their indoor fungal populations change over time following the Hurricane. Ultimately, after nearly two years, indoor and outdoor fungal communities converged in this sample of naturally ventilated homes.
Collapse
Affiliation(s)
- Lorraine N. Vélez-Torres
- Department of Microbiology & Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Benjamín Bolaños-Rosero
- Department of Microbiology & Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | | | - Juan P. Maestre
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kerry Kinney
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Humberto Cavallin
- School of Architecture, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
7
|
Castro E Silva DDM, Marcusso RMN, Barbosa CGG, Gonçalves FLT, Cardoso MRA. Air pollution and its impact on the concentration of airborne fungi in the megacity of São Paulo, Brazil. Heliyon 2020; 6:e05065. [PMID: 33083593 PMCID: PMC7550922 DOI: 10.1016/j.heliyon.2020.e05065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 11/05/2022] Open
Abstract
In the context of megacities in an urban environment, air quality is an important issue, due to the direct correlation to population's health. The biomonitoring of pollutants can indicate subtle environmental alterations, for that, anemophilous fungi can be monitored for changes in atmospheric conditions related to pollution. In the present study, the concentration of fungi and bacteria in the atmosphere was measured during a specific vehicle fleet reduction in the city of São Paulo, Brazil, from May 24 to 30, 2018, using impactor air samplers. The number of isolated developed colonies was related to atmospheric conditions and the concentration of other air pollutants constantly monitored. Aspergillus, Curvularia, Penicillium, Neurospora, Rhizopus and Trichoderma were identified. The number of colony-forming units increased by approximately 80% during the sampling period in response to environmental changes favored by the fleet reduction. This result implies the relation between fuel emissions, concentration of atmospheric pollutants, and the presence of viable fungal spores in the urban environment, which highlights the importance of combined public policies for air quality in large cities.
Collapse
|
8
|
Dey D, Gupta Bhattacharya S. Allergenicity assessment of fungal species using immunoclinical and proteomic techniques: a study on Fusarium lateritium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:545-557. [PMID: 31044611 DOI: 10.1080/09603123.2019.1609658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Airborne fungal spores are extensively reported as the elicitors of respiratory allergies in human. Fusarium lateritium is one such fungal species reported for eliciting significant skin prick results from India. The present study aims to analyze the allergenic potential of F. lateritium followed by the identification of allergens. The total protein of F. lateritium was subjected to 1dimensional (1D) and 2D gel electrophoresis followed by corresponding IgE-specific immunoblots. We found 8 immunoreactive bands/zones in (1D) immunoblot using 11 F. lateritium-sensitised patient sera. In 1D immunoblot, a 34 kDa band was detected in >80% of the patients and hence considered as a potential allergen of F. lateritium. Corresponding 34 kDa spot in 2D-immunoblot was analyzed by mass spectrometric analysis and identified as Glyceraldehyde 3-phosphate dehydrogenase. The identified F. lateritium allergen holds the potential to instigate vaccine development for immunotherapy of F. lateritium sensitized patients.
Collapse
Affiliation(s)
- Debarati Dey
- Division of Plant Biology, Bose Institute (Main Campus) , Kolkata, India
| | | |
Collapse
|
9
|
Ercilla-Montserrat M, Izquierdo R, Belmonte J, Montero JI, Muñoz P, De Linares C, Rieradevall J. Building-integrated agriculture: A first assessment of aerobiological air quality in rooftop greenhouses (i-RTGs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:109-120. [PMID: 28437767 DOI: 10.1016/j.scitotenv.2017.04.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Building-integrated rooftop greenhouse (i-RTG) agriculture has intensified in recent years, due to the growing interest in the development of new agricultural spaces and in the promotion of food self-sufficiency in urban areas. This paper provides a first assessment of the indoor dynamics of bioaerosols in an i-RTG, with the aim of evaluating biological air quality in a tomato greenhouse near Barcelona. It evaluates the greenhouse workers' exposure to airborne pollen and fungal spores in order to prevent allergy problems associated with occupational tasks. Moreover, it evaluates whether the quality of the hot air accumulated in the i-RTG is adequate for recirculation to heat the building. Daily airborne pollen and fungal spore concentrations were measured simultaneously in the indoor and outdoor environments during the warm season. A total of 4,924pollengrains/m3 were observed in the i-RTG, with a peak of 334pollengrains/m3day, and a total of 295,038 fungal spores were observed, reaching a maximum concentration of 26,185spores/m3day. In general, the results showed that the most important source of pollen grains and fungal spores observed indoors was the outdoor environment. However, Solanaceae pollen and several fungal spore taxa, such as the allergenic Aspergillus/Penicillium, largely originated inside the greenhouses or were able to colonize the indoor environment under favourable growing conditions. Specific meteorological conditions and agricultural management tasks are related to the highest observed indoor concentrations of pollen grains and fungal spores. Therefore, preventive measures have been suggested in order to reduce or control the levels of bioaerosols indoors (to install a system to interrupt the recirculation of air to the building during critical periods or to implement appropriate air filters in ventilation air ducts). This first evaluation could help in making decisions to prevent the development of fungal diseases, specifically those due to Oidium and Torula.
Collapse
Affiliation(s)
- Mireia Ercilla-Montserrat
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (MDM-2015-0552), Z Building, Autonomous University of Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Rebeca Izquierdo
- AEROBIOTA Research Group (2014SGR1274), Institute of Environmental Sciences and Technology (ICTA), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Jordina Belmonte
- AEROBIOTA Research Group (2014SGR1274), Institute of Environmental Sciences and Technology (ICTA), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Juan Ignacio Montero
- Institute of Food and Agricultural Research (IRTA), Carretera de Cabrils, km 2, 08348 Barcelona, Spain
| | - Pere Muñoz
- Institute of Food and Agricultural Research (IRTA), Carretera de Cabrils, km 2, 08348 Barcelona, Spain
| | - Concepción De Linares
- AEROBIOTA Research Group (2014SGR1274), Institute of Environmental Sciences and Technology (ICTA), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Joan Rieradevall
- Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (MDM-2015-0552), Z Building, Autonomous University of Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, School of Engineering, Building Q, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
An Impedance-Based Mold Sensor with on-Chip Optical Reference. SENSORS 2016; 16:s16101603. [PMID: 27690039 PMCID: PMC5087392 DOI: 10.3390/s16101603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 12/02/2022]
Abstract
A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.
Collapse
|
11
|
Shedding light on Aspergillus niger volatile exometabolome. Sci Rep 2016; 6:27441. [PMID: 27264696 PMCID: PMC4893740 DOI: 10.1038/srep27441] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 01/22/2023] Open
Abstract
An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern.
Collapse
|