1
|
A single step, centrifuge-free method to harvest bone marrow highly concentrated in mesenchymal stem cells: results of a pilot trial. INTERNATIONAL ORTHOPAEDICS 2021; 46:391-400. [PMID: 34727209 DOI: 10.1007/s00264-021-05243-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The aims of the present study were: (1) to characterize the bone-marrow aspirate (BMA) obtained with a centrifuge-free process, employing a dedicated aspiration device; (2) to test the in vitro efficacy of BMA in a model of cartilage inflammation; and (3) to report the preliminary clinical results in a small cohort of patients affected by knee OA. METHODS Ten patients (4 M, 6 W; mean age: 51.9 ± 9.2 yy) affected by mild to moderate unicompartmental knee OA (KL grade 2-3) were treated by intra-articular and subchondral injections of BMA obtained by a centrifuge-free process. To evaluate the effectiveness of the device in harvesting mesenchymal stem cells (MSCs), samples of the obtained BMA were tested by flow cytometry before and after subculture; BMA ability to counteract inflammation was also tested in an in vitro model of cartilage cell inflammation, evaluating the expression of MMP1, MMP3, TGFβ and TIMP-1 by real-time PCR. Patients were also evaluated up to two years' follow-up by using: VAS for pain, IKDC-subjective and KOOS scores. RESULTS The laboratory analysis showed that BMSCs accounted for 0.011% of BMA cells, similar to what had been expected in native bone marrow. The paracrine activity of BMA was able to reduce in vitro the catabolic response of human chondrocyte, as shown by the decrease in metalloproteases concentration and increase in anti-inflammatory mediators. Moreover, the clinical evaluation showed significant improvements in all scores adopted, with stable results up to two years. CONCLUSION The present data showed the effectiveness of the study device to harvest pure bone marrow with minimal peripheral blood contamination. The relevant content of MSCs resulted in the ability to counteract the catabolic cascade through a paracrine action. The clinical outcomes in patients affected by unicompartmental knee OA were encouraging in terms of pain reduction and functional improvement up to mid-term evaluation.
Collapse
|
2
|
Viganò M, Lugano G, Perucca Orfei C, Menon A, Ragni E, Colombini A, De Luca P, Randelli P, de Girolamo L. Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. INTERNATIONAL ORTHOPAEDICS 2020; 45:419-426. [PMID: 32642826 DOI: 10.1007/s00264-020-04693-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Rotator cuff tears are common musculoskeletal disorders, and surgical repair is characterized by a high rate of re-tear. Regenerative medicine strategies, in particular mesenchymal stem cell-based therapies, have been proposed to enhance tendon healing and reduce the re-tear rate. Autologous microfragmented adipose tissue (μFAT) allows for the clinical application of cell therapies and showed the ability to improve tenocyte proliferation and viability in previous in vitro assessments. The hypothesis of this study is that μFAT paracrine action would reduce the catabolic and inflammatory marker expression in tendon cells (TCs) derived from injured supraspinatus tendon (SST). METHODS TCs derived from injured SST were co-cultured with autologous μFAT in transwell for 48 h. Metabolic activity, DNA content, the content of soluble mediators in the media, and the gene expression of tendon-specific, inflammatory, and catabolic markers were analyzed. RESULTS μFAT-treated TCs showed a reduced expression of PTGS2 and MMP-3 with respect to untreated controls. Increased IL-1Ra, VEGF, and IL-6 content were observed in the media of μFAT-treated samples, in comparison with untreated TCs. CONCLUSION μFAT exerted an anti-inflammatory action on supraspinatus tendon cells in vitro through paracrine action, resulting in the reduction of catabolic and inflammatory marker expression. These observations potentially support the use of μFAT as adjuvant therapy in the treatment of rotator cuff disease.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Gaia Lugano
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Carlotta Perucca Orfei
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Alessandra Menon
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.,1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Enrico Ragni
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Alessandra Colombini
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Paola De Luca
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Pietro Randelli
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.,1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - Laura de Girolamo
- Orthopedics Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
3
|
Szymański Ł, Sobiczewska E, Cios A, Szymanski P, Ciepielak M, Stankiewicz W. Immunotropic effects in cultured human blood mononuclear cells exposed to a 900 MHz pulse-modulated microwave field. JOURNAL OF RADIATION RESEARCH 2020; 61:27-33. [PMID: 31832654 PMCID: PMC6976861 DOI: 10.1093/jrr/rrz085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
The specific biological effect of electromagnetic field (EMF) remains unknown even though devices present in our daily lives, such as smartphones and Wi-Fi antennae increase the environmental level of electromagnetic radiation. It is said that the human immune system is able to react to discrete environmental stimuli like EMF. To investigate the effect of 900 MHz microwave stimulation on the immune system our research aimed to analyze lymphocyte proliferation and observe and assess the basic immunoregulatory activities using a newly developed and improved anechoic chamber. Samples of mononuclear cells (PBMC) isolated from the blood of healthy donors were exposed to 900 MHz pulse-modulated radiofrequency radiation (20 V/m, SAR 0.024 W/kg) twice (15 min each) or left without irradiation (control group). Subsequently, the control and exposed cells were set up to determine several parameters characterizing T cell immunocompetence and monocyte immunogenic activity. Although the microcultures of PBMC exposed to radiofrequency radiation demonstrated higher immunogenic activity of monocytes (LM index) and T-cell response to concanavalin A than control cultures after first exposure, this parameter decreased after a second stimulation. Saturation of the interleukin-2 (IL-2) receptor rose significantly after the second day of exposure. On the other hand, response to mitogen dropped after EMF stimulation. The results suggest that PBMC are able to overcome stress caused by mitogens after stimulation with 900 MHz radiation.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Elżbieta Sobiczewska
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Aleksandra Cios
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Corresponding Author: Zakład Ochrony Mikrofalowej WIHE, Budynek Izotopów, Szaserów 128, Warsaw, Poland. Tel: 22261817103;
| | - Pawel Szymanski
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Martyna Ciepielak
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| |
Collapse
|
4
|
Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater 2020; 101:598-608. [PMID: 31610341 DOI: 10.1016/j.actbio.2019.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022]
Abstract
Biodegradability and mechanical properties of magnesium alloys are attractive for orthopaedic and cardiovascular applications. In order to study their cytotoxicity usually bone cells are used. However, after implantation, diverse and versatile cells are recruited and interact. Among the first ones coming into play are cells of the immune system, which are responsible for the inflammatory reaction. Macrophages play a central role in the inflammatory process due to the production of cytokines involved in the tissue healing but also in the possible failure of the implants. In order to evaluate the in vitro influence of the degradation products of magnesium-based alloys on cytokine release, the extracts of pure magnesium and two magnesium alloys (with gadolinium and silver as alloying elements) were examined in an inflammatory in vitro model. Human promonocytic cells (U937 cells) were differentiated into macrophages and further cultured with magnesium-based extracts for 1 and 3 days (simulating early and late inflammatory reaction phases), either at 37 °C or at 39 °C (mimicking normal and inflammatory conditions, respectively). All extracts exhibit very good cytocompatibility on differentiated macrophages. Results suggest that M1 and even more M2 profiles of macrophage were stimulated by the extracts of Mg. Furthermore, Mg-10Gd and Mg-2Ag extracts introduced a nuancing effect by rather inhibiting macrophage M1 profile. Magnesium-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair. STATEMENT OF SIGNIFICANCE: Macrophage are the key-cells during inflammation and can influence the fate of tissue healing and implant performance. Magnesium-based implants are biodegradable and bioactive. Here we selected an in vitro system to model early and late inflammation and effect of pyrexia (37 °C versus 39 °C). We showed the beneficial and nuancing effects of magnesium (Mg) and the selected alloying elements (silver (Ag) and gadolinium (Gd)) on the macrophage polarisation. Mg extracts exacerbated simultaneously the macrophage M1 and M2 profiles while Mg-2Ag and Mg-10Gd rather inhibited the M1 differentiation. Furthermore, 39 °C exhibited protective effect by either decreasing cytokine production or promoting anti-inflammatory ones, with or without extracts. Mg-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair.
Collapse
Affiliation(s)
- M D Costantino
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Schuster
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - H Helmholz
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Meyer-Rachner
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - R Willumeit-Römer
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - B J C Luthringer-Feyerabend
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany.
| |
Collapse
|
5
|
Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells Int 2019; 2019:5620286. [PMID: 31885616 PMCID: PMC6915130 DOI: 10.1155/2019/5620286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) emerged as a promising therapy for tendon pathologies. Microfragmented adipose tissue (μFAT) represents a convenient autologous product for the application of MSC-based therapies in the clinical setting. In the present study, the ability of μFAT to counteract inflammatory processes induced by IL-1β on human tendon cells (TCs) was evaluated. Methods Cell viability and proliferation were evaluated after 48 hours of transwell coculture of TCs and autologous μFAT in the presence or absence of IL-1β. Gene expression of scleraxis, collagen type I and type III, metalloproteinases-1 and -3, and cyclooxygenase-2 was evaluated by real-time RT-PCR. The content of VEGF, IL-1Ra, TNFα, and IL-6 was evaluated by ELISA. Results IL-1β-treated TCs showed augmented collagen type III, metalloproteases, and cyclooxygenase-2 expression. μFAT was able to reduce the expression of collagen type III and metalloproteases-1 in a significant manner, and at the same time, it enhanced the production of VEGF, IL-1Ra, and IL-6. Conclusions In this in vitro model of tendon cell inflammation, the paracrine action of μFAT, exerted by anti-inflammatory molecules and growth factors, was able to inhibit the expression of fibrosis and catabolic markers. Then, these results suggest that the application of μFAT may represent an effective conservative or adjuvant therapy for the treatment of tendon disorders.
Collapse
|
6
|
Kermanizadeh A, Brown DM, Stone V. The variances in cytokine production profiles from non- or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials. PLoS One 2019; 14:e0220974. [PMID: 31393970 PMCID: PMC6687179 DOI: 10.1371/journal.pone.0220974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
The portfolio of cytokines is key to the function of macrophages as sentries of the innate immune system as well as being critical for the transition from innate to adaptive immunity. Cytokine bias is critical in the fate of macrophages into a continuum of inflammatory to anti-inflammatory macrophages. Due to advances in the field of toxicology, increasingly advanced multi-cellular in vitro safety assessment models are being developed in order to allow for a better predication of potential adverse effects in humans with many of these models include a macrophage population. The selection of the correct macrophage cells in these advanced in vitro models is critical for a physiologically relevant and realistic immune response. In this study we investigated cytokine response profile (IL1-β, IL6, IL10 and TNF-α) of activated and non-activated THP-1 (immortalized monocyte-like cell line), primary human Kupffer cells (liver resident macrophages) and human primary peripheral blood mononuclear cells following exposure of a panel of nanomaterials or ethanol. The data demonstrated that the THP-1 cell line are not great cytokine producers. The PBMC appear to be a good in vitro surrogate for circulating/pro-inflammatory macrophages but are not a suitable replacement for Kupffer cells. The findings from this study highlight the necessity for the selection of appropriate macrophages populations to meet the specific physiological requirements of in vitro experiment.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
- * E-mail:
| | - David M. Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
| | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Stankiewicz W, Dabrowski MP, Kubacki R, Sobiczewska E, Szmigielski S. Immunotropic Influence of 900 MHz Microwave GSM Signal on Human Blood Immune Cells Activated in Vitro. Electromagn Biol Med 2009; 25:45-51. [PMID: 16595333 DOI: 10.1080/15368370600572961] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In an earlier study we reported that G(o) phase peripheral blood mononulclear cells (PBMC) exposed to low-level (SAR = 0.18 W/kg) pulse-modulated 1300 MHz microwaves and subsequently cultured, demonstrate changed immune activity (Dabrowski et al., 2003). We investigated whether cultured immune cells induced into the active phases of cell cycle (G(1), S) and then exposed to microwaves will also be sensitive to electromagnetic field. An anechoic chamber of our design containing a microplate with cultured cells and an antenna emitting microwaves (900 MHz simulated GSM signal, 27 V/m, SAR 0.024 W/kg) was placed inside the ASSAB incubator. The microcultures of PBMC exposed to microwaves demonstrated significantly higher response to mitogens and higher immunogenic activity of monocytes (LM index) than control cultures. LM index, described in detail elsewhere (Dabrowski et al., 2001), represents the monokine influence on lymphocyte mitogenic response. The results suggest that immune activity of responding lymphocytes and monocytes can be additionally intensified by 900 MHz microwaves.
Collapse
Affiliation(s)
- Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
8
|
Lee KM, Park SK, Hamajima N, Tajima K, Choi JY, Noh DY, Ahn SH, Yoo KY, Hirvonen A, Kang D. Genetic polymorphisms of interleukin-1 beta (IL-1B) and IL-1 receptor antagonist (IL-1RN) and breast cancer risk in Korean women. Breast Cancer Res Treat 2005; 96:197-202. [PMID: 16319982 DOI: 10.1007/s10549-005-9079-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 09/12/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the potential role of genetic polymorphisms of interleukin-1 beta (IL-1B) and IL-1 receptor antagonist (IL-1RN) on breast cancer development, a hospital-based case-control study was conducted in Korea. METHODS Histologically confirmed breast cancer cases (n = 560) and controls (n = 509) without cancer history were recruited from three teaching hospitals in Seoul between September 1998 and January 2002. Information on risk factors of breast cancer were collected by interviewed questionnaire. Genotypes of IL-1B (-31C/T) and IL-1RN (86 bp variable number tandom repeats in intron 2) were determined by PCR-CTPP (confronting two-pair primers) and PCR, respectively. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by unconditional logistic regression model. RESULTS The IL-1RN *2-allele was associated with decreased breast cancer risk with marginal significance (OR = 0.7, 95% CI = 0.48-1.05). The IL-1B CC or TC genotype was not associated with decreased risk of breast cancer (OR = 0.9, 95% CI = 0.65-1.16). However, combination of IL-1B C-allele (CT or CC) and IL-1RN *2-allele containing genotypes significantly decreased the risk of breast cancer (OR = 0.6, 95% CI = 0.39-0.99). A moderately decreasing trend of risk was observed as the number of 'putative low risk' allele increased (p for trend = 0.07). Suggestive combined effect on breast cancer risk was also observed between body mass index (BMI) and IL-1RN non-*2 allele: women with higher BMI and IL-1RN non-*2 allele had 1.7-fold higher risk than women with lower BMI and IL-1RN*2 genotypes. CONCLUSION Our results suggest that genetic polymorphisms of interleukin-1 may play a role in the individual susceptibility for breast cancer development in Korean women.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Cancer Research Institute, Institute of Environmental Medicine, SNUMRC, and Department of Preventive Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dabrowski MP, Stankiewicz W, Kubacki R, Sobiczewska E, Szmigielski S. Immunotropic Effects in Cultured Human Blood Mononuclear Cells Pre‐exposed to Low‐Level 1300 MHz Pulse‐Modulated Microwave Field. Electromagn Biol Med 2003. [DOI: 10.1081/jbc-120020347] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Dabrowski MP, Stankiewicz W. Desirable and undesirable immunotropic effects of antibiotics: immunomodulating properties of cefaclor. J Chemother 2001; 13:615-20. [PMID: 11806622 DOI: 10.1179/joc.2001.13.6.615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effect exerted on complex immunoregulatory functions of the immune system is an important criterion when selecting an antibiotic. When assessing the effect of an antibiotic on the immune system, one should also take into consideration the existence of functional relationships between the immune system and the nervous and hormonal systems. Among these three systems, there are common factors that modify biological processes. This makes it possible for the antibiotic not only to interact directly with the elements of the immune system, but also to exert indirect influences on potential neurotropic and endocrinotropic effects of the drug. Besides highly effective bactericidal activity, cefaclor demonstrates the ability to exert a favorable effect on some of the specific and non-specific immune responses and immunoregulation mechanisms, which may be important from a clinical point of view. Cefaclor enhances phagocytosis and bactericidal activity of granulocytes and macrophages, and favorably modifies the cooperation of monocytes and T lymphocytes. In this way, it corrects, both in vivo and in vitro, the immunoregulatory disturbances induced and aggravated by an infection. This effect is reflected by an improvement in the impaired immunoregulating activity of T lymphocytes, and is manifest both as an increase in suppressive activity and a correction of the monokine level ratio in relation to the decrease of proinflammatory monokine IL-1 and a relative increase of antiinflammatory IL-1ra. By normalizing the disturbed immunoregulation mechanism, cefaclor enhances the protective potential of the immune reaction while it also reduces the risk of immunogenic clinical complications such as persistent inflammatory conditions and allergic and/or autoaggressive responses. Such immunomodulating properties of cefaclor may be useful in the clinical treatment of patients with immune disorders leading to chronic inflammation and secondary allergic or autoaggressive reactions.
Collapse
Affiliation(s)
- M P Dabrowski
- Military Institute of Hygiene and Epidemiology, Department of Microwave Safety, Warsaw, Poland
| | | |
Collapse
|