1
|
Kaaru E, Bianchi A, Wunder A, Rasche V, Stiller D. Molecular Imaging in Preclinical Models of IBD with Nuclear Imaging Techniques: State-of-the-Art and Perspectives. Inflamm Bowel Dis 2016; 22:2491-8. [PMID: 27580387 DOI: 10.1097/mib.0000000000000904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is characterized by chronic unregulated inflammation of the intestinal mucosa of the gastrointestinal tract. To date, this pathology has no cure. Colonoscopy and biopsies are the current gold standard diagnostic tools. However, being a chronic disease, IBD requires continuous follow-up to check for disease progress, treatment response, and remission. Unfortunately, these 2 diagnostic procedures are invasive and generally unable to show the cellular and molecular changes that take place in vivo. In this context, it is clear that there is a strong need for optimized noninvasive imaging techniques able to overcome the aforementioned limitations. This review aims to bring to light the scientific advancements that have been achieved so far in nuclear medicine in relation to tracking of immune cells involved in the preclinical models of IBD. In particular, this review will explore the advantages and limitations of the radiopharmaceuticals that aim to track whole cells like neutrophils, those that involve the radiolabeling of immune cell substrates or available human IBD medical therapies, and those that aim to track cell signaling molecules (e.g., cytokines and cell adhesion molecules). After a detailed critical summary of the state-of-the art, the challenges and perspectives of molecular imaging applied to IBD studies will be analyzed. Special attention will be paid to the translational potential of the described techniques and on the potential impact of these innovative approaches on the drug discovery pipelines and their contribution to the evolution of personalized medicine.
Collapse
Affiliation(s)
- Eric Kaaru
- *Target Discovery Research Department, In-Vivo Imaging Laboratory, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany; †Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany; ‡Core Facility Small Animal Imaging, Ulm University, Ulm, Germany; and §Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
2
|
Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L, Ehrentraut SF, Curtis VF, Burgess A, Garvey JF, Sorensen A, Nemenoff R, Jedlicka P, Taylor CT, Kominsky DJ, Colgan SP. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014; 40:66-77. [PMID: 24412613 DOI: 10.1016/j.immuni.2013.11.020] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | - Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brittelle E Bowers
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melanie Scully
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bejan J Saeedi
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lucy Golden-Mason
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Valerie F Curtis
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adrianne Burgess
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Amber Sorensen
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raphael Nemenoff
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Jedlicka
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|