1
|
Mazzola G, Rondanelli M, Baron G, Zupo R, Castellana F, Clodoveo ML, Gasparri C, Barrile GC, Seniga M, Schiavi LM, Moroni A, Gulec S, Riso P, Perna S. Bergamot ( Citrus bergamia), a (Poly)Phenol-Rich Source for Improving Osteosarcopenic Obesity: A Systematic Review. Foods 2024; 13:3422. [PMID: 39517207 PMCID: PMC11545342 DOI: 10.3390/foods13213422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review investigates the potential of bergamot, a polyphenol-rich citrus fruit, in improving osteosarcopenic obesity, a condition characterized by the simultaneous presence of osteoporosis, obesity, and sarcopenia. Bergamot extracts have been suggested to possess several pharmacological properties, including anti-inflammatory and antioxidant effects, which could be useful in the management of age-related diseases and neuromuscular health. The review highlights the promising effects of bergamot extracts on skeletal muscle mass and function, particularly in the context of obesity, metabolic syndrome, osteosarcopenic obesity, and osteoporosis. Furthermore, some studies have shown that bergamot extracts can improve the metabolic balance, endothelial function, and maximal oxygen uptake in athletes, highlighting their potential benefits for skeletal muscle health. Taken together, these results suggest that bergamot extracts, especially those rich in polyphenols, may be a valuable adjunct in the management of osteosarcopenic obesity and other associated clinical conditions involving pro-inflammatory effects on organs and tissues.
Collapse
Affiliation(s)
- Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy;
| | - Roberta Zupo
- Department of Interdisciplinari Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (R.Z.); (M.L.C.)
| | - Fabio Castellana
- Department of Interdisciplinari Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (R.Z.); (M.L.C.)
| | - Maria Lisa Clodoveo
- Department of Interdisciplinari Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (R.Z.); (M.L.C.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Michela Seniga
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Luca Matteo Schiavi
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (C.G.); (G.C.B.); (M.S.); (L.M.S.); (A.M.)
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, 35430 Izmir, Türkiye;
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (S.P.)
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (S.P.)
| |
Collapse
|
2
|
Parafati M, La Russa D, Lascala A, Crupi F, Riillo C, Fotschki B, Mollace V, Janda E. Dramatic Suppression of Lipogenesis and No Increase in Beta-Oxidation Gene Expression Are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease. Antioxidants (Basel) 2024; 13:766. [PMID: 39061835 PMCID: PMC11273501 DOI: 10.3390/antiox13070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bergamot flavonoids have been shown to prevent metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and stimulate autophagy in animal models and patients. To investigate further the mechanism of polyphenol-dependent effects, we performed a RT2-PCR array analysis on 168 metabolism, transport and autophagy-related genes expressed in rat livers exposed for 14 weeks to different diets: standard, cafeteria (CAF) and CAF diet supplemented with 50 mg/kg of bergamot polyphenol fraction (BPF). CAF diet caused a strong upregulation of gluconeogenesis pathway (Gck, Pck2) and a moderate (>1.7 fold) induction of genes regulating lipogenesis (Srebf1, Pparg, Xbp1), lipid and cholesterol transport or lipolysis (Fabp3, Apoa1, Lpl) and inflammation (Il6, Il10, Tnf). However, only one β-oxidation gene (Cpt1a) and a few autophagy genes were differentially expressed in CAF rats compared to controls. While most of these transcripts were significantly modulated by BPF, we observed a particularly potent effect on lipogenesis genes, like Acly, Acaca and Fasn, which were suppressed far below the mRNA levels of control livers as confirmed by alternative primers-based RT2-PCR analysis and western blotting. These effects were accompanied by downregulation of pro-inflammatory cytokines (Il6, Tnfa, and Il10) and diabetes-related genes. Few autophagy (Map1Lc3a, Dapk) and no β-oxidation gene expression changes were observed compared to CAF group. In conclusion, chronic BPF supplementation efficiently prevents NAFLD by modulating hepatic energy metabolism and inflammation gene expression programs, with no effect on β-oxidation, but profound suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Francesco Crupi
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| |
Collapse
|
3
|
Russo C, Lombardo GE, Bruschetta G, Rapisarda A, Maugeri A, Navarra M. Bergamot Byproducts: A Sustainable Source to Counteract Inflammation. Nutrients 2024; 16:259. [PMID: 38257152 PMCID: PMC10819577 DOI: 10.3390/nu16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic inflammation is the result of an acute inflammatory response that fails to eliminate the pathogenic agent or heal the tissue injury. The consequence of this failure lays the foundations to the onset of several chronic ailments, including skin disorders, respiratory and neurodegenerative diseases, metabolic syndrome, and, eventually, cancer. In this context, the long-term use of synthetic anti-inflammatory drugs to treat chronic illnesses cannot be tolerated by patients owing to the severe side effects. Based on this, the need for novel agents endowed with anti-inflammatory effects prompted to search potential candidates also within the plant kingdom, being recognized as a source of molecules currently employed in several therapeutical areas. Indeed, the ever-growing evidence on the anti-inflammatory properties of dietary polyphenols traced the route towards the study of flavonoid-rich sources, such as Citrus bergamia (bergamot) and its derivatives. Interestingly, the recent paradigm of the circular economy has promoted the valorization of Citrus fruit waste and, in regard to bergamot, it brought to light new evidence corroborating the anti-inflammatory potential of bergamot byproducts, thus increasing the scientific knowledge in this field. Therefore, this review aims to gather the latest literature supporting the beneficial role of both bergamot derivatives and waste products in different models of inflammatory-based diseases, thus highlighting the great potentiality of a waste re-evaluation perspective.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| |
Collapse
|