1
|
Fluet G, Qiu Q, Gross A, Gorin H, Patel J, Merians A, Adamovich S. The influence of scaffolding on intrinsic motivation and autonomous adherence to a game-based, sparsely supervised home rehabilitation program for people with upper extremity hemiparesis due to stroke. A randomized controlled trial. J Neuroeng Rehabil 2024; 21:143. [PMID: 39138516 PMCID: PMC11321133 DOI: 10.1186/s12984-024-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND This parallel, randomized controlled trial examined intrinsic motivation, adherence and motor function improvement demonstrated by two groups of subjects that performed a 12-week, home-based upper extremity rehabilitation program. Seventeen subjects played scaffolded games, presenting eight to twelve discrete levels of increasing difficulty. Sixteen subjects performed the same activities controlled by success algorithms that modify game difficulty incrementally. METHODS 33 persons 20-80 years of age, at least 6 months post stroke with moderate to mild hemiparesis were randomized using a random number generator into the two groups. They were tested using the Action Research Arm Test, Upper Extremity Fugl Meyer Assessment, Stroke Impact Scale and Intrinsic Motivation Inventory pre and post training. Adherence was measured using timestamps generated by the gaming system. Subjects had the Home Virtual Rehabilitation System (Qiu in J Neuroeng Rehabil 17: 1-10, 2020) placed in their homes and were taught to perform rehabilitation games using it. Subjects were instructed to train twenty minutes per day but were allowed to train as much as they chose. Subjects trained for 12 weeks without appointments and received intermittent support from study staff. Group outcomes were compared using ANOVA. Correlations between subject demographics and adherence, as well as motor outcome, were evaluated using Pearson Correlation Coefficients. RESULTS There were 5 dropouts and no adverse events. The main effect of time was statistically significant for four of the five clinical outcome measures. There were no significant training group by time interactions. Measures of adherence did not differ significantly between groups. The combined groups improved their UEFMA scores on average by 5.85 (95% CI 4.73-6.98). 21 subjects from both groups demonstrating improvements in UEFMA scores of at least 5 points, exceeding the minimal clinically important difference of 4.25. IMI scores were stable pre to post training. CONCLUSIONS Scaffolding challenges during game based rehabilitation did not elicit higher levels of adherence when compared to algorithm control of game difficulty. Both sparsely supervised programs of game-based treatment in the home were sufficient to elicit statistically significant, clinically meaningful improvements in motor function and activities of daily living. TRIAL REGISTRATION Clinical Trials.gov-NCT03985761, Registered June 14, 2019.
Collapse
Affiliation(s)
- Gerard Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA.
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA
| | - Amanda Gross
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07015, USA
| | - Holly Gorin
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA
| | - Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA
| | - Alma Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA
| | - Sergei Adamovich
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers The State University of New Jersey, 65 Bergen St, Newark, NJ, 07101, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07015, USA
| |
Collapse
|
2
|
Fluet G, Qiu Q, Gross A, Gorin H, Patel J, Merians A, Adamovich S. The influence of scaffolding on intrinsic motivation and autonomous adherence to a game-based, unsupervised home rehabilitation program for people with upper extremity hemiparesis due to stroke. A randomized controlled trial. RESEARCH SQUARE 2024:rs.3.rs-4438077. [PMID: 38883760 PMCID: PMC11177982 DOI: 10.21203/rs.3.rs-4438077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background This parallel, randomized controlled trial examines intrinsic motivation, adherence and motor function improvement demonstrated by two groups of subjects that performed a twelve-week, home-based upper extremity rehabilitation program. Seventeen subjects played games presenting eight to twelve discrete levels of increasing difficulty. Sixteen subjects performed the same activities controlled by success algorithms that modify game difficulty incrementally. Methods 33 persons 20 to 80 years of age, at least six months post stroke with moderate to mild hemiparesis were randomized using a random number generator into the two groups. They were tested using the Action Research Arm Test, Upper Extremity Fugl Meyer Assessment, Stroke Impact Scale and Intrinsic Motivation Inventory pre and post training. Adherence was measured using timestamps generated by the system. Subjects had the Home Virtual Rehabilitation System [1]systems placed in their homes and were taught to perform rehabilitation games using it. Subjects were instructed to train twenty minutes per day but were allowed to train as much as they chose. Subjects trained for twelve weeks without appointments and received intermittent support from study staff. Group outcomes were compared using ANOVA. Correlations between subject demographics and adherence, as well as motor outcome, were evaluated using Pearson Correlation Coefficients. Classification and Regression Tree (CART) models were generated to predict responders using demographics and baseline measures. Results There were 5 dropouts and no adverse events. The main effect of time was statistically significant for four of the five clinical outcome measures. There were no significant training group by time interactions. Measures of adherence did not differ between groups. 21 subjects from both groups, demonstrated clinically important improvements in UEFMA score of at least 4.25 points. Subjects with pre training UEFMA scores below 53.5 averaged a seven-point UEFMA increase. IMI scores were stable pre to post training. Conclusions Scaffolding did not have a meaningful impact on adherence or motor function improvement. A sparsely supervised program of game-based treatment in the home was sufficient to elicit meaningful improvements in motor function and activities of daily living. Common factors considered barriers to the utilization of telerehabilitation did not impact adherence or motor outcome. Trial registration Clinical Trials.gov - NCT03985761, Registered June 14, 2019.
Collapse
Affiliation(s)
| | - Qinyin Qiu
- Rutgers, The State University of New Jersey
| | | | | | | | | | | |
Collapse
|
3
|
MontJohnson A, Cronce A, Qiu Q, Patel J, Eriksson M, Merians A, Adamovich S, Fluet G. Laboratory-Based Examination of the Reliability and Validity of Kinematic Measures of Wrist and Finger Function Collected by a Telerehabilitation System in Persons with Chronic Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052656. [PMID: 36904860 PMCID: PMC10007090 DOI: 10.3390/s23052656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/09/2023]
Abstract
We have developed the New Jersey Institute of Technology-Home Virtual Rehabilitation System (NJIT-HoVRS) to facilitate intensive, hand-focused rehabilitation in the home. We developed testing simulations with the goal of providing richer information for clinicians performing remote assessments. This paper presents the results of reliability testing examining differences between in-person and remote testing as well as discriminatory and convergent validity testing of a battery of six kinematic measures collected with NJIT-HoVRS. Two different groups of persons with upper extremity impairments due to chronic stroke participated in two separate experiments. Data Collection: All data collection sessions included six kinematic tests collected with the Leap Motion Controller. Measurements collected include hand opening range, wrist extension range, pronation-supination range, hand opening accuracy, wrist extension accuracy, and pronation-supination accuracy. The system usability was evaluated by therapists performing the reliability study using the System Usability Scale. When comparing the in-laboratory collection and the first remote collection, the intra-class correlation coefficients (ICC) for three of the six measurements were above 0.900 and the other three were between 0.500 and 0.900. Two of the first remote collection/second remote collection ICCs were above 0.900, and the other four were between 0.600 and 0.900. The 95% confidence intervals for these ICC were broad, suggesting that these preliminary analyses need to be confirmed by studies with larger samples. The therapist's SUS scores ranged from 70 to 90. The mean was 83.1 (SD = 6.4), which is consistent with industry adoption. There were statistically significant differences in the kinematic scores when comparing unimpaired and impaired UE for all six measures. Five of six impaired hand kinematic scores and five of six impaired/unimpaired hand difference scores demonstrated correlations between 0.400 and 0.700 with UEFMA scores. Reliability for all measures was acceptable for clinical practice. Discriminant and convergent validity testing suggest that scores on these tests may be meaningful and valid. Further testing in a remote setting is necessary to validate this process.
Collapse
Affiliation(s)
- Ashley MontJohnson
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07105, USA
- NeurotechR3 Inc., Warren, NJ 07059, USA
| | - Amanda Cronce
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07105, USA
- NeurotechR3 Inc., Warren, NJ 07059, USA
| | - Qinyin Qiu
- NeurotechR3 Inc., Warren, NJ 07059, USA
- School of Health Professions, Department of Rehabilitation and Movement Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Jigna Patel
- School of Health Professions, Department of Rehabilitation and Movement Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | | | - Alma Merians
- School of Health Professions, Department of Rehabilitation and Movement Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Sergei Adamovich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07105, USA
- School of Health Professions, Department of Rehabilitation and Movement Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Gerard Fluet
- School of Health Professions, Department of Rehabilitation and Movement Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Fluet G, Qiu Q, Patel J, Mont A, Cronce A, Yarossi M, Merians A, Adamovich S. Virtual Rehabilitation of the Paretic Hand and Arm in Persons With Stroke: Translation From Laboratory to Rehabilitation Centers and the Patient's Home. Front Neurol 2021; 12:623261. [PMID: 33584529 PMCID: PMC7876436 DOI: 10.3389/fneur.2021.623261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
The anatomical and physiological heterogeneity of strokes and persons with stroke, along with the complexity of normal upper extremity movement make the possibility that any single treatment approach will become the definitive solution for all persons with upper extremity hemiparesis due to stroke unlikely. This situation and the non-inferiority level outcomes identified by many studies of virtual rehabilitation are considered by some to indicate that it is time to consider other treatment modalities. Our group, among others, has endeavored to build on the initial positive outcomes in studies of virtual rehabilitation by identifying patient populations, treatment settings and training schedules that will best leverage virtual rehabilitation's strengths. We feel that data generated by our lab and others suggest that (1) persons with stroke may adapt to virtual rehabilitation of hand function differently based on their level of impairment and stage of recovery and (2) that less expensive, more accessible home based equipment seems to be an effective alternative to clinic based treatment that justifies continued optimism and study.
Collapse
Affiliation(s)
- Gerard Fluet
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Qinyin Qiu
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Jigna Patel
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Ashley Mont
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Amanda Cronce
- New Jersey Institute of Technology, Newark, NJ, United States
| | - Mathew Yarossi
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, MA, United States
| | - Alma Merians
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Sergei Adamovich
- Rutgers Biomedical and Health Sciences, Newark, NJ, United States
- New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
5
|
Patel J, Fluet G, Qiu Q, Yarossi M, Merians A, Tunik E, Adamovich S. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: a feasibility study. J Neuroeng Rehabil 2019; 16:92. [PMID: 31315612 PMCID: PMC6637633 DOI: 10.1186/s12984-019-0563-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND There is conflict regarding the benefits of greater amounts of intensive upper limb rehabilitation in the early period post-stroke. This study was conducted to test the feasibility of providing intensive therapy during the early period post-stroke and to develop a randomized control trial that is currently in process. Specifically, the study investigated whether an additional 8 h of specialized, intensive (200-300 separate hand or arm movements per hour) virtual reality (VR)/robotic based upper limb training introduced within 1-month post-stroke resulted in greater improvement in impairment and behavior, and distinct changes in cortical reorganization measured via Transcranial Magnetic Stimulation (TMS), compared to that of a control group. METHODS Seven subjects received 8-1 h sessions of upper limb VR/robotic training in addition to their inpatient therapy (PT, OT, ST). Six subjects only received their inpatient therapy. All were tested on measures of impairment [Upper Extremity Fugl-Meyer Assessment (UEFMA), Wrist AROM, Maximum Pinch Force], behavior [Wolf Motor Function Test (WMFT)], and also received TMS mapping until 6 months post training. ANOVAs were conducted to measure differences between groups across time for all outcome measures. Associations between changes in ipsilesional cortical maps during the early period of enhanced neuroplasticity and long-term changes in upper limb impairment and behavior measures were evaluated. RESULTS The VR/robotic group made significantly greater improvements on UEFMA and Wrist AROM scores compared to the usual care group. There was also less variability in the association between changes in the First Dorsal Interosseus (FDI) muscle map area and WMFT and Maximum Force change scores for the VR/robotic group. CONCLUSIONS An additional 8 h of intensive VR/robotic based upper limb training initiated within the first month post-stroke may promote greater gains in impairment compared to usual care alone. Importantly, the data presented demonstrated the feasibility of conducting this intervention and multiple outcome measures (impairment, behavioral, neurophysiological) in the early period post-stroke.
Collapse
Affiliation(s)
- Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Gerard Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Mathew Yarossi
- Movement Neuroscience Laboratory, Department of Physical Therapy, Bouve College of Health Sciences, Movement and Rehabilitation Science, Northeastern University, 308C Robinson Hall – 360 Huntington Avenue, Boston, MA 02115 USA
| | - Alma Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers University, The State University of New Jersey, 65 Bergen Street, Newark, NJ 07107 USA
| | - Eugene Tunik
- Movement Neuroscience Laboratory, Department of Physical Therapy, Bouve College of Health Sciences, Movement and Rehabilitation Science, Northeastern University, 308C Robinson Hall – 360 Huntington Avenue, Boston, MA 02115 USA
| | - Sergei Adamovich
- Department of Biomedical Engineering, New Jersey Institute of Technology, 616 Fenster Hall – 323 Dr. MLK Jr. BLVD, Newark, NJ 07102 USA
| |
Collapse
|
6
|
Yarossi M, Patel J, Qiu Q, Massood S, Fluet G, Merians A, Adamovich S, Tunik E. The Association Between Reorganization of Bilateral M1 Topography and Function in Response to Early Intensive Hand Focused Upper Limb Rehabilitation Following Stroke Is Dependent on Ipsilesional Corticospinal Tract Integrity. Front Neurol 2019; 10:258. [PMID: 30972004 PMCID: PMC6443957 DOI: 10.3389/fneur.2019.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/26/2019] [Indexed: 01/12/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) are an established proxy of corticospinal excitability. As a binary measure, the presence (MEP+) or absence (MEP-) of ipsilesional hemisphere MEPs early following stroke is a robust indicator of long-term recovery, however this measure does not provide information about spatial cortical reorganization. MEPs have been systematically acquired over the sensorimotor cortex to "map" motor topography. In this investigation we compared the degree to which functional improvements resulting from early (<3 months post-stroke) intensive hand focused upper limb rehabilitation correlate with changes in motor topography between MEP+ and MEP- individuals. Following informed consent, 17 individuals (4 Female, 60.3 ± 9.4 years, 24.6 ± 24.01 days post first time stroke) received 8 one hour-sessions of training with virtual reality (VR)/Robotic simulations. Clinical tests [Box and Blocks Test (BBT), Wolf Motor Function Test (WMFT), Upper Extremity Fugl-Meyer (UEFMA)], kinematic and kinetic assessments [finger Active Range of Motion (finger AROM), Maximum Pinch Force (MPF)], and bilateral TMS mapping of 5 hand muscles were performed prior to (PRE), directly following (POST), and 1 month following (1M) training. Participants were divided into two groups (MEP+, MEP-) based on whether an MEP was present in the affected first dorsal interosseous (FDI) at any time point. MEP+ individuals improved significantly more than MEP- individuals from PRE to 1M on the WMFT, BBT, and finger AROM scores. Ipsilesional hemisphere FDI area increased significantly with time in the MEP+ group. FDI area of the contralesional hemisphere was not significantly different across time points or groups. In the MEP+ group, significant correlations were observed between PRE-1M changes in ipsilesional FDI area and WMFT, BBT, and finger AROM, and contralesional FDI area and UEFMA and MPF. In the MEP- group, no significant correlations were found between changes in contralesional FDI area and functional outcomes. We report preliminary evidence in a small sample that patterns of recovery and the association of recovery to bilateral changes in motor topography may depend on integrity of the ipsilesional cortical spinal tract as assessed by the presence of TMS evoked MEPs.
Collapse
Affiliation(s)
- Mathew Yarossi
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States.,SPIRAL Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Supriya Massood
- Brookdale Rehabilitation - North Campus, Naples Community Hospital, Naples, FL, United States
| | - Gerard Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Alma Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Sergei Adamovich
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eugene Tunik
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States.,Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States.,Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
7
|
Zhang W, Zhao F, Qin W, Ma L. Altered Spontaneous Regional Brain Activity in the Insula and Visual Areas of Professional Traditional Chinese Pingju Opera Actors. Front Neurosci 2018; 12:450. [PMID: 30018534 PMCID: PMC6037822 DOI: 10.3389/fnins.2018.00450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recent resting-state fMRI studies have revealed neuroplastic alterations after long-term training. However, the neuroplastic changes that occur in professional traditional Chinese Pingju opera actors remain unclear. Twenty professional traditional Chinese Pingju opera actors and 20 age-, sex-, and handedness-matched laymen were recruited. Resting-state fMRI was obtained by using an echo-planar imaging sequence, and two metrics, amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), were utilized to assess spontaneous neural activity during resting state. Our results demonstrated that compared with laymen, professional traditional Chinese Pingju actors exhibited significantly decreased ALFF in the bilateral calcarine gyrus and cuneus; decreased ReHo in the bilateral superior occipital and calcarine gyri, cuneus, and right middle occipital gyrus; and increased ReHo in the left anterior insula. In addition, no significant association was found between spontaneous neural activity and Pingju opera training duration. Overall, the changes observed in spontaneous brain activity in professional traditional Chinese Pingju opera actors may indicate their superior performance of multidimensional professional skills, such as music and face perception, dancing, and emotional representation.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Radiology, People’s Liberation Army General Hospital, Beijing, China
| | - Fangshi Zhao
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ma
- Department of Radiology, People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
8
|
Vanbellingen T, Filius SJ, Nyffeler T, van Wegen EEH. Usability of Videogame-Based Dexterity Training in the Early Rehabilitation Phase of Stroke Patients: A Pilot Study. Front Neurol 2017; 8:654. [PMID: 29276499 PMCID: PMC5727075 DOI: 10.3389/fneur.2017.00654] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Approximately 70-80% of stroke survivors have limited activities of daily living, mainly due to dexterous problems. Videogame-based training (VBT) along with virtual reality seems to be beneficial to train upper limb function. OBJECTIVE To evaluate the usability of VBT using the Leap Motion Controller (LMC) to train fine manual dexterity in the early rehabilitation phase of stroke patients as an add-on to conventional therapy. Additionally, this study aimed to estimate the feasibility and potential efficacy of the VBT. METHODS During 3 months, 64 stroke patients were screened for eligibility, 13 stroke patients were included (4 women and 9 men; age range: 24-91 years; mean time post stroke: 28.2 days). INTERVENTION Nine sessions of 30 min VBT, three times per week as an add-on to conventional therapy with stroke inpatients. OUTCOME MEASURES Primary outcome was the usability of the system measured with the System Usability Scale. Secondary outcomes concerning feasibility were the compliance rate calculated from the total time spent on the intervention (TT) compared to planned time, the opinion of participants via open-end questions, and the level of active participation measured with the Pittsburgh Rehabilitation Participation Scale. Regarding the potential efficacy secondary outcomes were: functional dexterity measured with the Nine Hole Peg Test (NHPT), subjective dexterity measured with the Dexterity Questionnaire 24, grip strength measured with the Jamar dynamometer, and motor impairment of the upper limb measured with the Fugl-Meyer Upper Extremity (FM-UE) scale. RESULTS Primarily, the usability of the system was good to excellent. The patient's perception of usability remained stable over a mean period of 3 weeks of VBT. Secondly, the compliance rate was good, and the level of active participation varied between good and very good. The opinion of the participants revealed that despite individual differences, the overall impression of the therapy and device was good. Patients showed significant improvements in hand dexterity. No changes were found in motor impairment of the upper limb (FM-UE) during intervention. CONCLUSION VBT using LMC is a usable rehabilitation tool to train dexterity in the early rehabilitation phase of stroke inpatients.
Collapse
Affiliation(s)
- Tim Vanbellingen
- Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Suzanne J. Filius
- Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, Amsterdam, Netherlands
- Mechanical, Marine and Materials Engineering, Technical University of Delft, Delft, Netherlands
| | - Thomas Nyffeler
- Neurology and Neurorehabilitation Center, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Erwin E. H. van Wegen
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neurosciences, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| |
Collapse
|
9
|
Lo WLA, Mao YR, Li L, Lin AH, Zhao JL, Chen L, Lin Q, Li H, Huang DF. Prospective clinical study of rehabilitation interventions with multisensory interactive training in patients with cerebral infarction: study protocol for a randomised controlled trial. Trials 2017; 18:173. [PMID: 28399935 PMCID: PMC5387359 DOI: 10.1186/s13063-017-1874-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multisensory interactive training has an increasingly prominent role in stroke rehabilitation. Currently, there is insufficient evidence to demonstrate its efficacy on gait improvement, upper limb and lower limb functional improvement, global motor function and cognitive improvement. A recent Cochrane review confirmed that published studies on virtual reality (VR) training have the limitations of lack of powered sample size, did not evaluate the benefits over a long-term period and lacked trial quality on cognitive function. Another systematic review also concluded that the evidence for the use of VR in gait and balance improvement is limited. This study investigates the effects of multisensory training on gait pattern, upper and lower limb biomechanics, upper limb gross and fine motor functions, and lower limb functional recovery over a medium- to long-term period. METHODS Two hundred and twenty-four acute stroke patients will be recruited from a single centre over a period of 6 years. Participants will be randomly assigned to either conventional therapy or conventional therapy with VR training. Outcomes will be recorded at baseline, post intervention and at 3, 6 and 12 months post intervention. Primary outcome measure is gait speed. Secondary outcome measures include kinematic data of upper and lower limb motion, muscle tone, Action Research Arm Test and Short Orientation Memory Concentration Test. DISCUSSION The results of this trial will provide in-depth understanding of the effect of early VR interventions on gait, upper and lower limb biomechanics and how it may relate to changes in functional outcomes and muscle tone. TRIAL REGISTRATION Chinese Clinical Trial Registry (Registration No.: ChiCTR-IOC-15006064 ). Registered on 11 May 2015.
Collapse
Affiliation(s)
- Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yu Rong Mao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Le Li
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ai Hua Lin
- Faculty of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiang Li Zhao
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hai Li
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dong Feng Huang
- Department of Rehabilitation Medicine, Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|