1
|
Hesari Z, Mottaghitalab F, Shafiee A, Soleymani M, Dinarvand R, Atyabi F. Application of microfluidic systems for neural differentiation of cells. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4).181127.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neural differentiation of stem cells is an important issue in development of central nervous system. Different methods such as chemical stimulation with small molecules, scaffolds, and microRNA can be used for inducing the differentiation of neural stem cells. However, microfluidic systems with the potential to induce neuronal differentiation have established their reputation in the field of regenerative medicine. Organization of microfluidic system represents a novel model that mimic the physiologic microenvironment of cells among other two and three dimensional cell culture systems. Microfluidic system has patterned and well-organized structure that can be combined with other differentiation techniques to provide optimal conditions for neuronal differentiation of stem cells. In this review, different methods for effective differentiation of stem cells to neuronal cells are summarized. The efficacy of microfluidic systems in promoting neuronal differentiation is also addressed.
Collapse
Affiliation(s)
- Zahra Hesari
- Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | | | | |
Collapse
|
2
|
Meng H, Song Y, Zhu J, Liu Q, Lu P, Ye N, Zhang Z, Pang Y, Qi J, Wu H. LRG1 promotes angiogenesis through upregulating the TGF‑β1 pathway in ischemic rat brain. Mol Med Rep 2016; 14:5535-5543. [PMID: 27840991 PMCID: PMC5355675 DOI: 10.3892/mmr.2016.5925] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Stroke is a life-threatening disease that results in significant disability in the human population. Despite the advances in current stroke therapies, a host of patients do not benefit from the conventional treatments. Thus, more effective therapies are required. It has been previously reported that leucine-rich-α2-glycoprotein 1 (LRG1) is crucial during the formation of new blood vessels in retinal diseases. However, the function of LRG1 in the brain during the neovessel growth process following ischemic stroke has not been fully elucidated and the mechanism underlying its effect on angiogenesis remains unclear. The purpose of the current study was to demonstrate whether LRG1 may promote angiogenesis through the transforming growth factor (TGF)-β1 signaling pathway in ischemic rat brain following middle cerebral artery occlusion (MCAO). In the present study, the spatial and temporal expression of LRG1, TGF-β1, vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) were detected in ischemic rat brain following MCAO using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemistry. CD34 immunohistochemistry staining was used as an indicator of microvessel density (MVD). The RT-qPCR and western blotting results revealed that the levels of LRG1 and TGF-β1 mRNA and protein expression were significantly increased as early as 6 and 12 h after MCAO (P<0.05), respectively, peaked at 3 days and persisted at significantly higher level until 14 days, in comparison with the control group. Additionally, VEGF and Ang-2 were also increased following MCAO. Furthermore, the immunohistochemistry results suggested that the MVD was increased following MCAO. In addition, the results also revealed that the percentage of LRG1-positive cells was positively correlated with the percentage of TGF-β1-positive cells, and the percentage of LRG1-positive and TGF-β1-positive cells had a positively correlation with the MVD. Taken together, the present study indicated that LRG1 may promote angiogenesis through upregulating the TGF-β1 signaling pathway in ischemic rat brain following MCAO. This may provide a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Meng
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiyuan Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Pengtian Lu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Na Ye
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhen Zhang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - He Wu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|