1
|
Ferreira RR, Carvalho RV, Coelho LL, Gonzaga BMDS, Bonecini-Almeida MDG, Garzoni LR, Araujo-Jorge TC. Current Understanding of Human Polymorphism in Selenoprotein Genes: A Review of Its Significance as a Risk Biomarker. Int J Mol Sci 2024; 25:1402. [PMID: 38338681 PMCID: PMC10855570 DOI: 10.3390/ijms25031402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Regina Vieira Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| |
Collapse
|
2
|
Hughes DJ, Schomburg L, Jenab M, Biessy C, Méplan C, Moskal A, Sun Q, Demircan K, Fedirko V, Weiderpass E, Mukhtar M, Olsen A, Tjønneland A, Overvad K, Schulze M, Nøst TH, Skeie G, Olsen KS, Ricceri F, Grioni S, Palli D, Masala G, Tumino R, Pasanisi F, Amiano P, Colorado Yohar SM, Agudo A, Sánchez MJ, Ardanaz E, Sund M, Andersson A, Perez-Cornago A, Travis R, Heath AK, Dossus L. Prediagnostic selenium status, selenoprotein gene variants and association with breast cancer risk in a European cohort study. Free Radic Biol Med 2023; 209:381-393. [PMID: 37923090 DOI: 10.1016/j.freeradbiomed.2023.10.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Selenium (Se) may help prevent breast cancer (BC) development. Owing to limited observational evidence, we investigated whether prediagnostic Se status and/or variants in the selenoprotein genes are associated with BC risk in a large European cohort. Se status was assessed by plasma measures of Se and its major circulating proteins, selenoprotein P (SELENOP) and glutathione peroxidase 3 (GPX3), in matched BC case-control pairs (2208 for SELENOP; 1785 for GPX3 and Se) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Single nucleotide polymorphisms (SNPs, n = 452) in 55 selenoprotein and Se metabolic pathway genes and an additional 18 variants previously associated with Se concentrations were extracted from existing genotyping data within EPIC for 1564 case-control pairs. Multivariable-adjusted logistic regression models were used to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the association between Se status markers, SNP variants and BC risk. Overall, there was no statistically significant association of Se status with BC risk. However, higher GPX3 activity was associated with lower risk of premenopausal BC (4th versus 1st quartile, OR = 0.54, 95 % CI: 0.30-0.98, Ptrend = 0.013). While none of the genetic variant associations (P ≤ 0.05) retained significance after multiple testing correction, rs1004243 in the SELENOM selenoprotein gene and two SNPs in the related antioxidant TXN2 gene (rs4821494 and rs5750261) were associated with respective lower and higher risks of BC at a significance threshold of P ≤ 0.01. Fourteen SNPs in twelve Se pathway genes (P ≤ 0.01) in interaction with Se status were also associated with BC risk. Higher Se status does not appear to be associated with BC risk, although activity of the selenoenzyme GPX3 may be inversely associated with premenopausal BC risk, and SNPs in the Se pathway alone or in combination with suboptimal Se status may influence BC risk.
Collapse
Affiliation(s)
- David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Catherine Méplan
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Aurelie Moskal
- International Agency for Research on Cancer (IARC-WHO), Lyon, France; Research on Healthcare Performance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, Lyon, France
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité - Medical University, Berlin, Germany
| | - Veronika Fedirko
- Department of Epidemiology, MD Anderson Cancer Centre, Houston, TX, USA
| | | | - Maryam Mukhtar
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anja Olsen
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Diet, Genes, and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Matthias Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, TO, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori di Milano, 20133, Milano, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS Ragusa, Italy
| | - Fabrizio Pasanisi
- Departiment Di Medicina Clinica E Chirurgia Federico Ii University, Naples, Italy
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra M Colorado Yohar
- Department of Epidemiology, Murcia Regional Health Council, IMIB, Murcia, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Malin Sund
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Andersson
- Department of Radiation Sciences/Oncology, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Laure Dossus
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
3
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
4
|
Zhang Y, He J, Jin J, Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022; 14:6596881. [PMID: 35648480 DOI: 10.1093/mtomcs/mfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
Metals play a critical role in human health and diseases. In recent years, metallomics has been introduced and extensively applied to investigate the distribution, regulation, function, and crosstalk of metal(loid) ions in various physiological and pathological processes. Based on high-throughput multielemental analytical techniques and bioinformatics methods, it is possible to elucidate the correlation between the metabolism and homeostasis of diverse metals and complex diseases, in particular for cancer. This review aims to provide an overview of recent progress made in the application of metallomics in cancer research. We mainly focuses on the studies about metallomic profiling of different human biological samples for several major types of cancer, which reveal distinct and dynamic patterns of metal ion contents and the potential benefits of using such information in the detection and prognosis of these malignancies. Elevated levels of copper appear to be a significant risk factor for various cancers, and each type of cancer has a unique distribution of metals in biofluids, hair/nails, and tumor-affected tissues. Furthermore, associations between genetic variations in representative metalloprotein genes and cancer susceptibility have also been demonstrated. Overall, metallomics not only offers a better understanding of the relationship between metal dyshomeostasis and the development of cancer but also facilitates the discovery of new diagnostic and prognostic markers for cancer translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie He
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Cihan Ren
- Experimental High School Attached to Beijing Normal University, Beijing 100052, P. R. China
| |
Collapse
|
5
|
Lack of Association between Common Polymorphisms in Selenoprotein P Gene and Susceptibility to Colorectal Cancer, Breast Cancer, and Prostate Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6525449. [PMID: 34616844 PMCID: PMC8490044 DOI: 10.1155/2021/6525449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Method We search the PubMed, Embase, Google Scholar, and Wanfang (China) databases (up to December 1, 2020) to identify all eligible publications. The pooled odds ratio (OR) correspondence with 95% confidence interval (CI) was calculated to evaluate the associations. Results Finally, nine eligible studies with 7,157 cases and 6,440 controls and five studies with 2,278 cases and 2,821 controls were enrolled in rs3877899 and rs7579 polymorphisms, individually. However, a null significant association was detected between the two polymorphisms in SEPP1 and susceptibility to colorectal, breast, and prostate cancer in all comparison models. Subsequently, subgroup analysis based on tumor type, no significant association was identified for prostate, breast, and colorectal cancer. In addition, when the stratification analyses were conducted by the source of control, HWE status, and ethnicity, yet no significant association was found. Conclusions The current meta-analysis shows that SEPP1 rs3877899 and rs7579 polymorphisms may not be associated with susceptibility to colon cancer, breast cancer, and prostate cancer, and further well-designed studies with a larger sample size are warranted to validate our findings.
Collapse
|
6
|
Canter JA, Ernst SE, Peters KM, Carlson BA, Thielman NRJ, Grysczyk L, Udofe P, Yu Y, Cao L, Davis CD, Gladyshev VN, Hatfield DL, Tsuji PA. Selenium and the 15kDa Selenoprotein Impact Colorectal Tumorigenesis by Modulating Intestinal Barrier Integrity. Int J Mol Sci 2021; 22:10651. [PMID: 34638991 PMCID: PMC8508755 DOI: 10.3390/ijms221910651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof's potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.
Collapse
Affiliation(s)
- Jessica A. Canter
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Sarah E. Ernst
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Kristin M. Peters
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Bradley A. Carlson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Noelle R. J. Thielman
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Lara Grysczyk
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Precious Udofe
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Yunkai Yu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Cindy D. Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20817, USA;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
| | - Dolph L. Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| |
Collapse
|
7
|
Sharifi R, Shahangian SS, Salehi Z, Mashayekhi F, Talesh Sasani S, Mirzanezhad L. Influence of a 5-bp Indel Polymorphism at Promoter of the GAS5 lncRNA and Risk of Breast Cancer. Asian Pac J Cancer Prev 2020; 21:3705-3710. [PMID: 33369471 PMCID: PMC8046312 DOI: 10.31557/apjcp.2020.21.12.3705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules (>200 nucleotides in length) with no protein-coding capacity. Recent studies have demonstrated that lncRNAs involve in the regulation of their target genes at transcriptional, post-transcriptional and epigenetic levels. The aim of this case-control study was to explore whether growth arrest-specific 5 (GAS5) lncRNA 5-bp Ins/Del (rs145204276) polymorphism is involved in the breast cancer susceptibility. A total of 170 cases and 220 age matched controls were recruited in this study. GAS5 lncRNA polymorphism was genotyped using tetra primers amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) method. Statistical analysis was performed using SPSS. The distribution of the genotype ins/ins, ins/del and del/del were %75.29, 21.76% and 2.94% and 52.27%, 39.55% and 8.81% in the cases and controls, respectively. The ins/del or del/del genotype had a significantly decreased risk of breast cancer as compared with the ins/ins genotype under a codominant model (OR=0.38, 95%CI 0.24-0.60, p=0.0001; OR= 0.25, 95%CI 0.09-0.69, p=0.008, respectively). Moreover, the deletion allele of this polymorphic site is associated with a protective effect (OR=0.41, 95%CI 0.28-0.60, p=0.0001). Our study provided the first evidence that the deletion allele of GAS5 rs145204276 may have a protective role in mediating individual susceptibility to breast cancer. However, further comprehensive studies are warranted in a larger sample.
Collapse
Affiliation(s)
- Rafat Sharifi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Laleh Mirzanezhad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Bahreini F, Ramezani S, Shahangian SS, Salehi Z, Mashayekhi F. miR-559 polymorphism rs58450758 is linked to breast cancer. Br J Biomed Sci 2019; 77:29-34. [DOI: 10.1080/09674845.2019.1683309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- F Bahreini
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - S Ramezani
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - SS Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Z Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - F Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
9
|
Pabalan N, Tharabenjasin P, Natphopsuk S, Ekaratcharoenchai N, Jarjanazi H. Association of the selenoprotein 15-kDa ( SEP15) polymorphisms with cancer risk: a meta-analysis. Nutr Cancer 2019; 72:1297-1306. [PMID: 31665936 DOI: 10.1080/01635581.2019.1679195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selenoproteins are involved in antioxidant defense, the redox signaling pathway and cell homeostasis. Primary studies have shown that single-nucleotide polymorphisms in the selenoprotein gene (SEP15) are associated with cancer risk. However, conflicting outcomes warrant a meta-analysis to obtain more precise estimates. Literature search yielded 18 case-control studies from 12 articles. We calculated pooled odds ratios (OR) and 95% confidence intervals (CI) of two SEP15 polymorphisms (rs5845 and rs5859) using standard genetic models (homozygous, recessive, dominant and codominant). Subgroup analysis was based on statistical power (80% cutoff) and cancer type (breast/respiratory/genitourinary/colorectal). Heterogeneity of the outcomes necessitated examining their sources (outlier treatment). Multiple comparison outcomes were corrected with the False Discovery Rate (PaF). Our core findings lay in the post-outlier recessive subgroup outcomes, where risks in the powered study (≥ 80%) was increased (OR 1.26, 95% CI 1.02-1.57, PaF = 0.047) while that in genitourinary cancer was protective (OR 0.29, 95% CI 0.20-0.43, PaF < 10-4). The potency of outlier treatment in unmasking significant associations and generating homogeneity provides good evidence of SEP15's role in cancer. In the clinical sense, selenium chemo-intervention may be of benefit among persons with particular SEP15 genotypes.AbbreviationsAnumber of unduplicated articles that contributed to instabilityAManalysis modelBnumber of robust comparisonsBCbreast cancerBLCbladder cancercDNAcomplementary deoxyribonucleic acidCIconfidence intervalCIDconfidence interval differenceCRCcolorectal cancerDdecreased riskEHeliminated heterogeneityFfixed-effectsFDRFalse Discovery RateGUCgenitourinary cancersGSgained significanceHBhospital-basedHWEHardy-Weinberg EquilibriumIincreased riskI2measure of heterogeneitykDakiloDaltonLAClaryngeal cancerLUClung cancermafminor allele frequencynnumber of studiesNnumber of comparisonsNMnot mentionedNOSNewcastle-Ottawa ScaleORodds ratioPaP value for associationPaδP value for association (pre-FDR)PaFP value for association FDR-correctedPbP value for heterogeneityPBpopulation-basedPCprostate cancerPRISMAPreferred Reporting Items for Systematic Reviews and Meta-AnalysesPROpre-outlierPSOpost-outlierRrandom-effects[R]referenceRCrespiratory cancersRNSretained non-significanceROSreactive oxygen speciesSEPselenoproteinsSEP15selenoprotein geneSNPsingle nucleotide polymorphismSWShapiro-Wilk testUSAUnited States of Americavvvariantwvheterozygouswwwild-type.
Collapse
Affiliation(s)
- Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Sitakan Natphopsuk
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology and "-omics" approaches have been widely used to study complex and global variations of selenium metabolism and function in physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies. Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health and diseases are also discussed.
Collapse
Affiliation(s)
- Huimin Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Transcriptional Regulation of Selenoprotein F by Heat Shock Factor 1 during Selenium Supplementation and Stress Response. Cells 2019; 8:cells8050479. [PMID: 31109102 PMCID: PMC6562903 DOI: 10.3390/cells8050479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
Changes of Selenoprotein F (SELENOF) protein levels have been reported during selenium supplementation, stressful, and pathological conditions. However, the mechanisms of how these external factors regulate SELENOF gene expression are largely unknown. In this study, HEK293T cells were chosen as an in vitro model. The 5′-flanking regions of SELENOF were analyzed for promoter features. Dual-Glo Luciferase assays were used to detect promoter activities. Putative binding sites of Heat Shock Factor 1 (HSF1) were predicted in silico and the associations were further proved by chromatin immunoprecipitation (ChIP) assay. Selenate and tunicamycin (Tm) treatment were used to induce SELENOF up-regulation. The fold changes in SELENOF expression and other relative proteins were analyzed by Q-PCR and western blot. Our results showed that selenate and Tm treatment up-regulated SELENOF at mRNA and protein levels. SELENOF 5′-flanking regions from −818 to −248 were identified as core positive regulatory element regions. Four putative HSF1 binding sites were predicted in regions from −1430 to −248, and six out of seven primers detected positive results in ChIP assay. HSF1 over-expression and heat shock activation increased the promoter activities, and mRNA and protein levels of SELENOF. Over-expression and knockdown of HSF1 showed transcriptional regulation effects on SELENOF during selenate and Tm treatment. In conclusion, HSF1 was discovered as one of the transcription factors that were associated with SELENOF 5′-flanking regions and mediated the up-regulation of SELENOF during selenate and Tm treatment. Our work has provided experimental data for the molecular mechanism of SELENOF gene regulation, as well as uncovered the involvement of HSF1 in selenotranscriptomic for the first time.
Collapse
|
13
|
Blann A. British Journal of Biomedical Science in 2018: what have we learned? Br J Biomed Sci 2018; 76:1-10. [PMID: 30295133 DOI: 10.1080/09674845.2018.1533702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In 2018 the British Journal of Biomedical Science published one guideline (in reproductive science) and 40 research articles in the various disciplines the comprise biomedical science. The latter were 24 original articles and 16 'In Brief' short reports. Of these, 23 are of note to only one of the sub-disciplines (seven each to biochemists and microbiologists, six to cell pathologists, and one each to cytologists, immunologists and reproductive scientists). Reflecting the increasing complexity of laboratory science, thirteen papers crossed one boundary (three papers each relevant to biochemists and immunologists, and to haematologists and biochemists), whilst four papers were relevant to three or more disciplines. Indeed, biochemical techniques were used in 18 papers, microbiological techniques in 9, whilst histopathology was relevant to 11 papers. Notably, 20 papers used techniques in chromosome analysis and molecular genetics. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.
Collapse
Affiliation(s)
- A Blann
- a Institute of Biomedical Science , London , UK
| |
Collapse
|
14
|
Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018; 10:nu10111619. [PMID: 30400132 PMCID: PMC6266307 DOI: 10.3390/nu10111619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoproteins form a group of proteins of which its members contain at least one selenocysteine, and most of them serve oxidoreductase functions. Selenoprotein F (SELENOF), one of the 25 currently identified selenoproteins, is located in the endoplasmic reticulum (ER) organelle and is abundantly expressed in many tissues. It is regulated according to its selenium status, as well as by cell stress conditions. SELENOF may be functionally linked to protein folding and the secretion process in the ER. Several studies have reported positive associations between SELENOF genetic variations and several types of cancer. Also, altered expression levels of SELENOF have been found in cancer cases and neurodegenerative diseases. In this review, we summarize the current understanding of the structure, expression, and potential function of SELENOF and discuss its possible relation with various pathological processes.
Collapse
|
15
|
Shasttiri A, Rostamian Delavar M, Baghi M, Dehghani Ashkezari M, Ghaedi K. SNP rs10800708 within the KIF14 miRNA binding site is linked with breast cancer. Br J Biomed Sci 2018; 76:46-48. [DOI: 10.1080/09674845.2018.1509551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A Shasttiri
- Department of Biology, Islamic Azad University, Ashkezar, Iran
| | - M Rostamian Delavar
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - M Baghi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | | | - K Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| |
Collapse
|