1
|
WANG F, CHEN X, SONG Y, HUANG S, ZHOU C, HUANG C, CHEN Z, ZHANG L, JI Y. miR-223-3p suppresses inflammation to protect cardiomyocytes by targeting NLRP3 in acute myocardial infarction patients. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Xin CHEN
- Affiliated Nanjing Medical University, China
| | - Ying SONG
- Affiliated Nanjing Medical University, China
| | | | | | | | | | | | - Yuan JI
- Affiliated Nanjing Medical University, China
| |
Collapse
|
2
|
Zhai C, Li R, Hou K, Chen J, Alzogool M, Hu Y, Zhang J, Zhang Y, Wang L, Zhang R, Cong H. Value of Blood-Based microRNAs in the Diagnosis of Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Front Physiol 2020; 11:691. [PMID: 32922300 PMCID: PMC7456928 DOI: 10.3389/fphys.2020.00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Recent studies have shown that blood-based miRNAs are dysregulated in patients with acute myocardial infarction (AMI) and are therefore a potential tool for the diagnosis of AMI. Therefore, this study summarized and evaluated studies focused on microRNAs as novel biomarkers for the diagnosis of AMI from the last ten years. Methods: MEDLINE, the Cochrane Central database, and EMBASE were searched between January 2010 and December 2019. Studies that assessed the diagnostic accuracy of circulating microRNAs in AMI were chosen. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve (AUC) were used to assess the test performance of miRNAs. Results: A total of 58 studies that included 8,206 participants assessed the diagnostic accuracy of circulating miRNAs in AMI. The main results of the meta-analyses are as follows: (1) Total miRNAs: the overall pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.85) and 0.87 (95% CI: 0.84-0.90), respectively. The AUC value was 0.91 (95% CI: 0.88-0.93) in the overall summary receiver operator characteristic (SROC) curve. (2) The panel of two miRNAs: sensitivity: 0.88 (95% CI: 0.77-0.94), specificity: 0.84 (95% CI: 0.72-0.91), AUC: 0.92 (95% CI: 0.90-0.94). (3) The panel of three miRNAs: sensitivity: 0.91 (95% CI: 0.85-0.94), specificity: 0.87 (95% CI: 0.77-0.92), AUC: 0.92 (95% CI: 0.89-0.94). (4) Results by types of miRNAs: miRNA-1: sensitivity: 0.78 (95% CI: 0.71-0.84), specificity: 0.86 (95% CI: 0.77-0.91), AUC: 0.88 (95% CI: 0.85-0.90); miRNA-133a: sensitivity: 0.85 (95% CI: 0.69-0.94), specificity: 0.92 (95% CI: 0.61-0.99), AUC: 0.93 (95% CI: 0.91-0.95); miRNA-208b: sensitivity: 0.80 (95% CI: 0.69-0.88), specificity: 0.96 (95% CI: 0.77-0.99), AUC: 0.91 (95% CI: 0.88-0.93); miRNA-499: sensitivity: 0.85 (95% CI: 0.77-0.91), specificity: 0.95 (95% CI: 0.89-0.98), AUC: 0.96 (95% CI: 0.94-0.97). Conclusion: miRNAs may be used as potential biomarkers for the detection of AMI. For single, stand-alone miRNAs, miRNA-499 may have better diagnostic accuracy compared to other miRNAs. We propose that a panel of multiple miRNAs with high sensitivity and specificity should be tested.
Collapse
Affiliation(s)
- ChuanNan Zhai
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Li
- Tianjin GongAn Hospital, Tianjin, China
| | - Kai Hou
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingYi Chen
- School of Medicine, NanKai University, Tianjin, China
| | | | - YueCheng Hu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingXia Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - YingYi Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Le Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - HongLiang Cong
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
3
|
Abstract
Advances in molecular genetics have identified several species of RNA that fail to translate - hence the non-coding RNAs. The two major groups within this class of nucleic acids are microRNAs (miRNA) and long non-coding RNAs (lncRNA). There is growing body of evidence supporting the view that these molecules have regulatory effect on both DNA and RNA. The objective of this brief review is to explain the molecular genetic of these molecules, to summarize their potential as mediators of disease, and to highlight their value as diagnostic markers and as tools in disease management.
Collapse
Affiliation(s)
- P Waller
- Department of Biomedical Sciences, University of Kingston, London, UK
| | - A D Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|
4
|
Zhang Z, Wang N, Zhang Y, Zhao J, Lv J. Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19. Chem Biol Interact 2019; 309:108705. [PMID: 31199929 DOI: 10.1016/j.cbi.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as critical mediators of cerebral ischaemia/reperfusion injury. Recent studies have demonstrated that microRNA-302b-3p (miR-302b-3p) plays an important role in regulating apoptosis and oxidative stress in various cells. However, whether miR-302b-3p is involved in regulating cerebral ischaemia/reperfusion injury-induced neuronal apoptosis and oxidative stress remains unknown. In the present study, we explored the potential function and molecular mechanism of miR-302b-3p in oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, using an in vitro model of cerebral ischaemia/reperfusion injury. We found that miR-302b-3p expression was up-regulated by OGD/R treatment in neurons. The inhibition of miR-302b-3p improved cell viability, and reduced apoptosis and the production of reactive oxygen species, showing a protective effect against OGD/R-induced injury. Interestingly, miR-302b-3p was shown to target and modulate murine fibroblast growth factor 15 (FGF15). Moreover, our results showed that miR-302b-3p down-regulation contributed to the promotion of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)-mediated antioxidant signaling associated with the inactivation of glycogen synthase kinase-3β. However, the knockdown of FGF15 significantly reversed the miR-302b-3p inhibition-mediated protective effect in OGD/R-treated neurons. Overall, these results demonstrated that miR-302b-3p inhibition confers a neuroprotective effect in OGD/R-treated neurons by up-regulating Nrf2/ARE antioxidant signaling via targeting FGF15, providing a novel target for neuroprotection in cerebral ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhenni Zhang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Wang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yong Zhang
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Zhao
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianrui Lv
- Anesthesia Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
5
|
Yang J, Hu F, Fu X, Jiang Z, Zhang W, Chen K. MiR-128/SOX7 alleviates myocardial ischemia injury by regulating IL-33/sST2 in acute myocardial infarction. Biol Chem 2018; 400:533-544. [PMID: 30265647 DOI: 10.1515/hsz-2018-0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Abstract
Acute myocardial infarction (AMI) induced by ischemia hypoxia severely threatens human life. Cell apoptosis of neurocytes was identified to mediate the pathogenesis, while the potential mechanism was still unclear. Sprague Dawley (SD) rats were used to establish the AMI rat model. Real-time polymerase chain reaction (PCR) and Western blot were performed to detect gene expression in mRNA and protein levels, respectively. A TUNEL assay was carried out to determine cell apoptosis. The relationship between SRY-related HMG-box (SOX7) and miR-128 was verified using luciferase reporter assay. The expression of SOX7 was decreased, while miR-128 was increased in AMI rats and ischemia hypoxia (IH) induced H9c2 cells. Hypoxia induction significantly promoted the expression of interleukin (IL)-33 and soluble ST2 (sST2), and also promoted cell apoptosis. MiR-128 targets SOX7 to regulate its expression. Down-regulated miR-128 reversed the effects of IH on expression of SOX7, sST2 and cell apoptosis, while down-regulated sST2 abolished the effects of miR-128 inhibitor. In addition, overexpressed IL-33 abolished the effects of miR-128 inhibitor that induced by IH on the expression of SOX7 and cell apoptosis. In vivo experiments validated the expression of miR-128 on cell apoptosis. The present study indicated that miR-128 modulated cell apoptosis by targeting SOX7, which was mediated by IL-33/sST2 signaling pathway.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Fudong Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Xin Fu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Zhengming Jiang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Wencai Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| | - Kui Chen
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Rd., Zhengzhou 450052, Henan, China
| |
Collapse
|
6
|
Li Z, Zhou L, Lin C, Pan X, Xie J, Zhao L, Quan J, Xu J, Guan X, Xu W, Li H, Chen Y, Lai Y. MiR-302b regulates cell functions and acts as a potential biomarker to predict recurrence in bladder cancer. Life Sci 2018; 209:15-23. [PMID: 30075175 DOI: 10.1016/j.lfs.2018.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bladder cancer is the most common urogenital tumor with substantial morbidity, high recurrence rate and mortality. miRNAs, a class of endogenous noncoding RNA, were found to involve in the genesis, maintenance and metastasis of cancer. Genomic profiling revealed that miR-302b is down-regulated in bladder cancer while its functions in bladder cancer remain to be ascertained. METHODS Cell functional assays including wound healing assay, CCK-8 assay, Transwell assay and flow cytometry assay were performed to clarify the functions of miR-302b expression in cell proliferation, migration, invasion and apoptosis in BC. Furthermore, RT-qPCR was performed to study the expression of miR-302b in bladder cancer tissues and the prognostic value of altered miR-302b expression with 48 formalin-fixed paraffin-embedded bladder urothelial carcinoma samples. RESULTS The results of RT-qPCR demonstrated that expression level of miR-302b was significantly reduced in bladder cancer tissues and cell lines. The cells after transfected with miR-302b mimic showed lower mobility, lower proliferation and increased apoptosis, while opposite results were obtained after inhibiting the expression of miR-302b. The prognosis analysis demonstrated that the patients with low expression of miR-302b experienced high risks of recurrence. CONCLUSIONS The results of our study demonstrate that miR-302b regulates cell functions and acts as a potential biomarker to predict recurrence in bladder cancer.
Collapse
Affiliation(s)
- Zuwei Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Liang Zhou
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China; Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Jiansen Xie
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China.
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China.
| |
Collapse
|
7
|
|