1
|
de Souza Furtado P, Agnes Silva Camargo de Oliveira A, Santiago Rodrigues P, Rita Santiago de Paula Gonçalves A, Raphaella Autran Colaço A, Pinheiro da Costa S, Muniz da Paz M, Wetler Meireles Carreiros Assumpção P, Pereira Rangel L, Simon A, Almada do Carmo F, Mendes Cabral L, Cunha Sathler P. In vivo evaluation of time-dependent antithrombotic effect of rivaroxaban-loaded poly(lactic-co-glycolic acid)/sodium lauryl sulfate or didodecyl dimethylammonium bromide nanoparticles in Wistar rats. Eur J Pharm Biopharm 2023; 190:184-196. [PMID: 37517449 DOI: 10.1016/j.ejpb.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rivaroxaban (RVX), an oral direct factor Xa inhibitor, is being explored as an alternative to traditional anticoagulans. However, RVX still faces pharmacokinetic limitations and adverse effects, highlighting the need for more effective formulations. In this regard, pharmaceutical nanotechnology, particularly the use of polymeric nanoparticles (PNPs), offers a promising approach for optimizing RVX delivery. This study aimed to develop and physicochemically characterize RVX-loaded poly(lactic-co-glycolic acid) (PLGA)/sodium lauryl sulfate (SLS) or didodecyl dimethylammonium bromide (DMAB) nanoparticles, and also evaluate their pharmacological and toxicological profiles as a potential therapeutic strategy. The PNPs exhibited sizes below 300 nm and spherical morphology, with both negative and positive surface charges, according to surfactant used. They demonstrated high encapsulation efficiency and suitable yields, as well as rapid initial liberation followed by sustained release in different pH environments. Importantly, in vivo evaluations revealed a time-dependent antithrombotic effect surpassing the free form of RVX when administered orally in SLS or DMAB PNP. No hemolytic or cytotoxic effects were observed at various concentrations of the PNPs. Interestingly, the PNPs did not induce hemorrhagic events or cause liver enzyme alterations in vivo. These findings suggest that RVX-loaded SLS or DMAB PNPs are promising innovative therapeutic alternatives for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Priscila de Souza Furtado
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Pryscila Santiago Rodrigues
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Anna Raphaella Autran Colaço
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sandro Pinheiro da Costa
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Mariana Muniz da Paz
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Luciana Pereira Rangel
- Universidade Federal do Rio de Janeiro, LBT, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alice Simon
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia Almada do Carmo
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Lucio Mendes Cabral
- Universidade Federal do Rio de Janeiro, LabTIF, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Plínio Cunha Sathler
- Universidade Federal do Rio de Janeiro, LabHEx, Faculdade de Farmácia, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Araújo CDCB, Simon A, Honório TDS, da Silva SVC, Valle IMM, da Silva LCRP, Rodrigues CR, de Sousa VP, Cabral LM, Sathler PC, do Carmo FA. Development of rivaroxaban microemulsion-based hydrogel for transdermal treatment and prevention of venous thromboembolism. Colloids Surf B Biointerfaces 2021; 206:111978. [PMID: 34293580 DOI: 10.1016/j.colsurfb.2021.111978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
We have developed a microemulsion (ME)-based hydrogel, containing propylene glycol, Azone®, Labrasol®, isobutanol and water (20:3:18:3:56), for the transdermal delivery of rivaroxaban (RVX). Formulation ME-1:RVX, which was loaded with 0.3 mg/g of RVX, presented as a clear, homogenous fluid with a droplet size of 82.01 ± 6.32 nm and a PdI of 0.207 ± 0.01. To provide gelation properties, 20 % (w/w) of Pluronic® F-127 was added to ME-1:RVX to generate formulation PME-1a. An added benefit was an increased capacity for RVX to 0.4 mg/g (formulation PME-1b). PME-1b displayed spherical droplets with a nanoscale diameter as observed by Transmission Electron Microscopy. The release of RVX from PME-1b was 20.71 ± 0.76 μg/cm2 with a permeation through pig epidermis of 18.32 ± 8.87 μg/cm2 as measured in a Franz Cell for 24 h. PME-1b presented a pseudoplastic behavior, pH value compatible with the skin and good stability over 60 days at room and elevated temperatures. The prothrombin time was assessed for each concentration of RVX obtained in the permeation assay and each demonstrated a relevant anticoagulant activity. PME-1b also presented no cytotoxicity against HaCaT cells. Utilizing GastroPlus® software, an in silico analysis was performed to simulate the delivery of PME-1b through a transdermal system that suggested a minimum dose of RVX for the treatment and prevention of venous thromboembolism could be achieved with an 8 h administration regimen. These results suggest that PME-1b is a promising transdermal formulation for the effective delivery of RVX that could be a viable alternative for the treatment and prevention of venous thromboembolism.
Collapse
Affiliation(s)
- Cristina da Costa Bernardes Araújo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Thiago da Silva Honório
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Silvia Valéria Cruz da Silva
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Isabella Mourão Machado Valle
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Luiz Cláudio Rodrigues Pereira da Silva
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Plínio Cunha Sathler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil
| | - Flávia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Cidade Universitária, Rio de Janeiro, 21.941-902, Brazil.
| |
Collapse
|
3
|
Blann A. British Journal of Biomedical Science in 2019. What have we learned? Br J Biomed Sci 2019; 77:1-6. [PMID: 31818192 DOI: 10.1080/09674845.2019.1692455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2019 the British Journal of Biomedical Science published 40 articles in the various disciplines that comprise biomedical science. These were one review, 22 original articles and 17 'In Brief' short reports. Of those citing original data, the majority were in cellular pathology (14 papers), clinical chemistry (9 papers), and microbiology (6 papers: 4 in bacteriology and 2 in virology). There were 3 papers in haematology and 2 in andrology, whilst 5 papers crossed traditional discipline boundaries (such as the molecular genetics of IL6, liver function tests, and hepatocellular carcinoma). Over two-thirds of papers used techniques in molecular genetics. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.
Collapse
Affiliation(s)
- A Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|