1
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
2
|
Rao BD, Sarkar P, Chattopadhyay A. Selectivity in agonist and antagonist binding to Serotonin 1A receptors via G-protein coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183265. [PMID: 32156647 DOI: 10.1016/j.bbamem.2020.183265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins in higher eukaryotes, and facilitate information transfer from the extracellular environment to the cellular interior upon activation by ligands. Their role in diverse signaling processes makes them an attractive choice as drug targets. GPCRs are coupled to heterotrimeric G-proteins which represent an important interface through which signal transduction occurs across the plasma membrane upon activation by ligands. To obtain further insight into the molecular details of interaction of G-proteins with GPCRs, in this work, we explored the selectivity of binding of specific agonists and antagonists to the serotonin1A receptor under conditions of progressive G-protein inactivation. The serotonin1A receptor is an important neurotransmitter receptor belonging to the GPCR family and is a popular drug target. By use of a number of agents to inactivate G-proteins, we show here that the serotonin1A receptor displays differential discrimination between agonist and antagonist binding. Our results show a reduction in binding sites of the receptor upon treatment with G-protein inactivating agents. In addition, G-protein coupling efficiency was enhanced when G-proteins were inactivated using urea and alkaline pH. We envision that our results could be useful in achieving multiple signaling states of the receptor by fine tuning the conditions of G-protein inactivation and in structural biology of GPCRs bound to specific ligands.
Collapse
Affiliation(s)
- Bhagyashree D Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
4
|
Reddy ST, Shrivastava S, Mallesham K, Chattopadhyay A. Cholesterol-dependent thermotropic behavior and organization of neuronal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2611-2616. [PMID: 27453199 DOI: 10.1016/j.bbamem.2016.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
The composition of neuronal membranes is unique with diverse lipid composition due to evolutionary requirement. The organization and dynamics of neuronal membranes are crucial for efficient functioning of neuronal receptors. We have previously established hippocampal membranes as a convenient natural source for exploring lipid-protein interactions, and organization of neuronal receptors. Keeping in mind the pathophysiological role of neuronal cholesterol, in this work, we used differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS) to explore thermotropic phase behavior and organization (thickness) of hippocampal membranes under conditions of varying cholesterol content. Our results show that the apparent phase transition temperature of hippocampal membranes displays characteristic linear dependence on membrane cholesterol content. These results are in contrast to earlier results with binary lipid mixtures containing cholesterol where phase transition temperature was found to be not significantly dependent on cholesterol concentration. Interestingly, SAXS data showed that hippocampal membrane thickness remained more or less invariant, irrespective of cholesterol content. We believe that these results constitute one of the early reports on the thermotropic phase behavior and organizational characterization of hippocampal membranes under varying cholesterol content. These results could have implications in the functioning of neuronal receptors in healthy and diseased states.
Collapse
Affiliation(s)
- S Thirupathi Reddy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - K Mallesham
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
5
|
Membrane cholesterol stabilizes the human serotonin1A receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2936-42. [DOI: 10.1016/j.bbamem.2012.07.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
|
6
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Divisionof Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
7
|
Pucadyil TJ, Chattopadhyay A. The human serotonin1A receptor exhibits G-protein-dependent cell surface dynamics. Glycoconj J 2006; 24:25-31. [PMID: 17123166 DOI: 10.1007/s10719-006-9008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Seven transmembrane domain G-protein-coupled receptors constitute the largest family of proteins in mammals. Signal transduction events mediated by such receptors are the primary means by which cells communicate with and respond to their external environment. The major paradigm in this signal transduction process is that stimulation of the receptor leads to the recruitment and activation of heterotrimeric GTP-binding proteins. These initial events, which are fundamental to all types of G-protein-coupled receptor signaling, occur at the plasma membrane via protein-protein interactions. As a result, the dynamics of the activated receptor on cell surfaces represents an important determinant in its encounter with G-proteins, and has significant impact on the overall efficiency of the signal transduction process. We have monitored the cell surface dynamics of the serotonin(1A) receptor, an important member of the G-protein-coupled receptor superfamily, in relation to its interaction with G-proteins. Fluorescence recovery after photobleaching experiments carried out with the receptor tagged to the enhanced yellow fluorescent protein indicate that G-protein activation alters the diffusion properties of the receptor in a manner suggesting the activation process leads to dissociation of G-proteins from the receptor. This result demonstrates that the cell surface dynamics of the serotonin(1A) receptor is modulated in a G-protein-dependent manner. Importantly, this result could provide the basis for a sensitive and powerful approach to assess receptor/G-protein interaction in an intact cellular environment.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
8
|
Paila YD, Chattopadhyay A. The Human Serotonin
1A
Receptor Expressed in Neuronal Cells: Toward a Native Environment for Neuronal Receptors. Cell Mol Neurobiol 2006. [DOI: 10.1007/pl00021779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chattopadhyay A, Jafurulla M, Pucadyil TJ. Ligand Binding and G-protein Coupling of the Serotonin1A Receptor in Cholesterol-enriched Hippocampal Membranes. Biosci Rep 2006; 26:79-87. [PMID: 16763764 DOI: 10.1007/s10540-006-9009-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Since a large portion of such transmembrane receptors remains in contact with the membrane lipid environment, lipid–protein interactions assume importance in the structure-function analysis of such receptors. We have earlier reported the requirement of cholesterol for serotonin1A receptor function in native hippocampal membranes by specific depletion of cholesterol using methyl- β-cyclodextrin. In this paper, we monitored the serotonin1A receptor function in membranes that are enriched in cholesterol using a complex prepared from cholesterol and methyl-β-cyclodextrin. Our results indicate that ligand binding and receptor/G-protein interaction of the serotonin1A receptor do not exhibit significant difference in native and cholesterol-enriched hippocampal membranes indicating that further enrichment of cholesterol has little functional consequence on the serotonin1A receptor function. These results therefore provide new information on the effect of cholesterol enrichment on the hippocampal serotonin1A receptor function.
Collapse
|
10
|
Pucadyil TJ, Jafurulla M, Chattopadhyay A. Prolonged treatment with ligands affects ligand binding to the human serotonin(1A) receptor in Chinese hamster ovary cells. Cell Mol Neurobiol 2006; 26:247-57. [PMID: 16767512 DOI: 10.1007/s10571-006-9002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
1. The serotonin(1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins, and appear to be involved in several behavioral and cognitive functions. 2. We monitored the effect of prolonged treatment of the human serotonin(1A) receptor expressed in Chinese hamster ovary (CHO) cells with pharmacologically well-characterized ligands on its binding to the agonist 8-hydroxy-2(di-N-propylamino)tetralin (8-OH-DPAT) and antagonist 4-(2'-methoxy)-phenyl-1-[2'-(N-2''-pyridinyl)-p-fluorodobenzamido]ethyl-piperazine (p-MPPF). 3. Our results indicate that prolonged treatment with the specific agonist (8-OH-DPAT) differentially affects subsequent binding of the agonist and antagonist to the receptor in a manner independent of receptor-G-protein coupling. Importantly, our results show that prolonged treatment with the commonly used antagonist p-MPPF, and its iodinated analogue 4-(2'-methoxy)-phenyl-1-[2'-(N-2''-pyridinyl)-p-iodobenzamido]ethyl-piperazine (p-MPPI), which have earlier been reported to display similar binding properties to serotonin(1A) receptors, induces significantly different effects on the ligand binding function of serotonin(1A) receptors.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | | | | |
Collapse
|
11
|
Minetti CASA, Remeta DP. Energetics of membrane protein folding and stability. Arch Biochem Biophys 2006; 453:32-53. [PMID: 16712771 DOI: 10.1016/j.abb.2006.03.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 11/24/2022]
Abstract
The critical role of membrane proteins in a myriad of biological and physiological functions has spawned numerous investigations over the past several decades with the long-term goal of identifying the molecular origins and energetic forces that stabilize these proteins within the membrane. Parallel structural and thermodynamics studies on several systems have provided significant insight regarding the driving forces governing folding, assembly, insertion, and translocation of membrane proteins. The present review surveys families of membrane-associated proteins including alpha-helical and beta-barrel structures, viral surface receptors, and pore-forming toxins, citing representative proteins within each of these classes for further scrutiny in terms of structure-function relationships and global conformational stability. This overview presents seminal findings from pioneering studies on the energetics of membrane protein folding and stability to modern techniques that are exploiting the use of molecular genetics and single molecule studies. An overall consensus regarding the molecular origins of membrane protein stability is that a number of intrinsic properties resemble features of soluble proteins, yet there are distinct energetic differences arising from specific intra- and intermolecular interactions within the membrane. The combined efforts from structural, energetics, and dynamics approaches offer unique insights and improve our fundamental understanding of the driving forces dictating membrane protein folding and stability.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Rutgers-The State University of New Jersey, Department of Chemistry and Chemical Biology, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
12
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
13
|
Funchal C, Schuck PF, Santos AQD, Jacques-Silva MC, Gottfried C, Pessoa-Pureur R, Wajner M. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Cell Mol Neurobiol 2006; 26:67-79. [PMID: 16633902 DOI: 10.1007/s10571-006-9098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/14/2005] [Indexed: 11/28/2022]
Abstract
Accumulation of the branched-chain alpha-keto acids (BCKA), alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV), and alpha-ketoisovaleric acid (KIV) and their respective branched-chain alpha-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pucadyil TJ, Chattopadhyay A. Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:35-42. [PMID: 16005846 DOI: 10.1016/j.bbamem.2005.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/15/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning. Since a significant portion of the protein lies embedded in the membrane and the ligand-binding pocket is defined by the transmembrane stretches in such receptors, membrane composition and organization represent a crucial parameter in the structure-function analysis of G-protein coupled receptors. In this paper, we have monitored the role of membrane cholesterol in the ligand-binding function of the hippocampal serotonin1A receptor. Our results demonstrate that the reduction of membrane cholesterol significantly attenuates the antagonist-binding function of the serotonin1A receptor. Based on prior pharmacological knowledge regarding the requirements for the antagonist to bind the receptor, our results indicate that membrane cholesterol modulates receptor function independently of its ability to interact with G-proteins. These effects on ligand-binding function of the receptor are predominantly reversed upon cholesterol-replenishment of cholesterol-depleted membranes. When viewed in the light of our earlier results on the effect of cholesterol depletion on the serotonin1A receptor/G-protein interaction, these results comprehensively demonstrate the importance of cholesterol in the serotonin1A receptor function and form the basis for understanding lipid-protein interactions involving this important neuronal receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
15
|
Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 2005; 25:553-80. [PMID: 16075379 DOI: 10.1007/s10571-005-3969-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/03/2004] [Indexed: 12/14/2022]
Abstract
1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions. 2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors. 3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed. 4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides. 5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | |
Collapse
|
16
|
Kalipatnapu S, Jafurulla M, Chandrasekaran N, Chattopadhyay A. Effect of Mg2+ on guanine nucleotide sensitivity of ligand binding to serotonin1A receptors from bovine hippocampus. Biochem Biophys Res Commun 2004; 323:372-6. [PMID: 15369761 DOI: 10.1016/j.bbrc.2004.08.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 11/22/2022]
Abstract
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
17
|
Pucadyil TJ, Chattopadhyay A. Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:188-200. [PMID: 15157621 DOI: 10.1016/j.bbamem.2004.03.010] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/08/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of cholesterol from bovine hippocampal membranes using varying concentrations of MbetaCD results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT to 5-HT(1A) receptors. This is accompanied by alterations in binding affinity and sites obtained from analysis of binding data. Importantly, cholesterol depletion affected G-protein-coupling of the receptor as monitored by the GTP-gamma-S assay. The concomitant changes in membrane order were reported by changes in fluorescence polarization of membrane probes such as DPH and TMA-DPH, which are incorporated at different locations (depths) in the membrane. Replenishment of membranes with cholesterol led to recovery of ligand binding activity as well as membrane order to a considerable extent. Our results provide evidence, for the first time, that cholesterol is necessary for ligand binding and G-protein coupling of this important neurotransmitter receptor. These results could have significant implications in understanding the influence of the membrane lipid environment on the activity and signal transduction of other G-protein-coupled transmembrane receptors.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
18
|
Pucadyil TJ, Shrivastava S, Chattopadhyay A. The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem Biophys Res Commun 2004; 320:557-62. [PMID: 15219865 DOI: 10.1016/j.bbrc.2004.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Indexed: 01/24/2023]
Abstract
We have monitored the ligand binding of the bovine hippocampal 5-HT1A receptor following treatment with the sterol-binding antifungal antibiotic nystatin. Nystatin considerably inhibits the specific binding of the antagonist to 5-HT1A receptors in a concentration-dependent manner. However, the specific agonist binding does not show significant changes. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed a substantial decrease in the membrane order in the interior of the bilayer. Experiments with cholesterol-depleted membranes indicate that the action of nystatin is mediated through membrane cholesterol. These results represent the first report on the effect of a cholesterol-perturbing agent on the ligand-binding activity of this important neurotransmitter receptor.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | |
Collapse
|