1
|
Campbell RP, Whittington AC, Zorio DAR, Miller BG. Recruitment of a Middling Promiscuous Enzyme Drives Adaptive Metabolic Evolution in Escherichia coli. Mol Biol Evol 2023; 40:msad202. [PMID: 37708398 PMCID: PMC10519446 DOI: 10.1093/molbev/msad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
A key step in metabolic pathway evolution is the recruitment of promiscuous enzymes to perform new functions. Despite the recognition that promiscuity is widespread in biology, factors dictating the preferential recruitment of one promiscuous enzyme over other candidates are unknown. Escherichia coli contains four sugar kinases that are candidates for recruitment when the native glucokinase machinery is deleted-allokinase (AlsK), manno(fructo)kinase (Mak), N-acetylmannosamine kinase (NanK), and N-acetylglucosamine kinase (NagK). The catalytic efficiencies of these enzymes are 103- to 105-fold lower than native glucokinases, ranging from 2,400 M-1 s-1 for the most active candidate, NagK, to 15 M-1 s-1 for the least active candidate, AlsK. To investigate the relationship between catalytic activities of promiscuous enzymes and their recruitment, we performed adaptive evolution of a glucokinase-deficient E. coli strain to restore glycolytic metabolism. We observed preferential recruitment of NanK via a trajectory involving early mutations that facilitate glucose uptake and amplify nanK transcription, followed by nonsynonymous substitutions in NanK that enhance the enzyme's promiscuous glucokinase activity. These substitutions reduced the native activity of NanK and reduced organismal fitness during growth on an N-acetylated carbon source, indicating that enzyme recruitment comes at a cost for growth on other substrates. Notably, the two most active candidates, NagK and Mak, were not recruited, suggesting that catalytic activity alone does not dictate evolutionary outcomes. The results highlight our lack of knowledge regarding biological drivers of enzyme recruitment and emphasize the need for a systems-wide approach to identify factors facilitating or constraining this important adaptive process.
Collapse
Affiliation(s)
- Ryan P Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Diego A R Zorio
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
2
|
Hitt DM, Zwicker JD, Chao CK, Patel SA, Gerdes JM, Bridges RJ, Thompson CM. Inhibition of the Vesicular Glutamate Transporter (VGLUT) with Congo Red Analogs: New Binding Insights. Neurochem Res 2021; 46:494-503. [PMID: 33398639 DOI: 10.1007/s11064-020-03182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
The vesicular glutamate transporter (VGLUT) facilitates the uptake of glutamate (Glu) into neuronal vesicles. VGLUT has not yet been fully characterized pharmacologically but a body of work established that certain azo-dyes bearing two Glu isosteres via a linker were potent inhibitors. However, the distance between the isostere groups that convey potent inhibition has not been delineated. This report describes the synthesis and pharmacologic assessment of Congo Red analogs that contain one or two glutamate isostere or mimic groups; the latter varied in the interatomic distance and spacer properties to probe strategic binding interactions within VGLUT. The more potent inhibitors had two glutamate isosteres symmetrically linked to a central aromatic group and showed IC50 values ~ 0.3-2.0 μM at VGLUT. These compounds contained phenyl, diphenyl ether (PhOPh) or 1,2-diphenylethane as the linker connecting 4-aminonaphthalene sulfonic acid groups. A homology model for VGLUT2 using D-galactonate transporter (DgoT) to dock and identify R88, H199 and F219 as key protein interactions with Trypan Blue, Congo Red and selected potent analogs prepared and tested in this report.
Collapse
Affiliation(s)
- David M Hitt
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA.,Department of Chemistry, Carroll College, 1601 N Benton Ave., Helena, MT, 59625, USA
| | - Jeffery D Zwicker
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA.,Deciphera Pharmaceuticals, 643 Massachusetts St, Lawrence, KS, 66044, USA
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sarjubhai A Patel
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Richard J Bridges
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
3
|
Peabody GL, Elmore JR, Martinez-Baird J, Guss AM. Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:295. [PMID: 31890023 PMCID: PMC6927180 DOI: 10.1186/s13068-019-1627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.
Collapse
Affiliation(s)
- George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua R. Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | | | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
4
|
Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods. J Membr Biol 2016; 250:145-162. [DOI: 10.1007/s00232-016-9942-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
5
|
Whittaker CAP, Patching SG, Esmann M, Middleton DA. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement. Org Biomol Chem 2015; 13:2664-8. [DOI: 10.1039/c4ob02427c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic relaxation-enhanced solid-state NMR reveals a ouabain analogue with an inverted orientation in the Na,K-ATPase inhibitory site.
Collapse
Affiliation(s)
| | | | - Mikael Esmann
- Department of Biomedicine
- Aarhus University
- Aarhus
- Denmark
| | | |
Collapse
|
6
|
Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJF, Patching SG. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 2014; 31:131-40. [DOI: 10.3109/09687688.2014.911980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 2013; 38:151-9. [PMID: 23403214 DOI: 10.1016/j.tibs.2013.01.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.
Collapse
Affiliation(s)
- Nieng Yan
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
PatchinG SG, Henderson PJF, Sharples DJ, Middleton DA. Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using1H-13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 2012; 30:129-37. [DOI: 10.3109/09687688.2012.743193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
10
|
Khare P, Mulakaluri A, Parsons SM. Search for the acetylcholine and vesamicol binding sites in vesicular acetylcholine transporter: the region around the lumenal end of the transport channel. J Neurochem 2010; 115:984-93. [PMID: 20831599 DOI: 10.1111/j.1471-4159.2010.06990.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vesicular acetylcholine transporter (VAChT; TC 2.A.1.2.13) mediates storage of acetylcholine (ACh) by synaptic vesicles. A three-dimensional homology model of VAChT is available, but the binding sites for ACh and the allosteric inhibitor (-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol) are unknown. In previous work, mutations of invariant W331 in the lumenal beginning of transmembrane helix VIII (TM VIII) of rat VAChT led to as much as ninefold loss in equilibrium affinity for ACh and no loss in affinity for vesamicol. The current work investigates the effects of additional mutations in and around W331 and the nearby lumenal end of the substrate transport channel. Mutants of human VAChT were expressed in the PC12(A123.7) cell line and characterized using radiolabeled ligands and filtration assays for binding and transport. Properties of a new and a repeat mutation in W331 are consistent with the original observations. Of 16 additional mutations in 13 other residues (Y60 in the beginning of lumenal Loop I/II, F231 in the lumenal end of TM V, W315, M316, K317, in the lumenal end of TM VII, M320, A321, W325, A330 in lumenal Loop VII/VIII, A334 in the lumenal beginning of TM VIII, and C388, C391, F392 in the lumenal beginning of TM X), only A334F impairs binding. This mutation decreases ACh and vesamicol equilibrium binding affinities by 14- and 4-fold, respectively. The current results, combined with previous results, demonstrate existence of a spatial cluster of residues close to vesicular lumen that decreases affinity for ACh and/or vesamicol when the cluster is mutated. The cluster is composed of invariant W331, highly conserved A334, and invariant F335 in TM VIII and invariant C391 in TM X. Different models for the locations of the ACh and vesamicol binding sites relative to this cluster are discussed.
Collapse
Affiliation(s)
- Parul Khare
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | |
Collapse
|
11
|
Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc Natl Acad Sci U S A 2010; 107:18451-6. [PMID: 20937906 DOI: 10.1073/pnas.1005729107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how an amino acid sequence folds into a functional, three-dimensional structure has proved to be a formidable challenge in biological research, especially for transmembrane proteins with multiple alpha helical domains. Mechanistic folding studies on helical membrane proteins have been limited to unusually stable, single domain proteins such as bacteriorhodopsin. Here, we extend such work to flexible, multidomain proteins and one of the most widespread membrane transporter families, the major facilitator superfamily, thus showing that more complex membrane proteins can be successfully refolded to recover native substrate binding. We determine the unfolding free energy of the two-domain, Escherichia coli galactose transporter, GalP; a bacterial homologue of human glucose transporters. GalP is reversibly unfolded by urea. Urea causes loss of substrate binding and a significant reduction in alpha helical content. Full recovery of helical structure and substrate binding occurs in dodecylmaltoside micelles, and the unfolding free energy can be determined. A linear dependence of this free energy on urea concentration allows the free energy of unfolding in the absence of urea to be determined as +2.5 kcal·mol(-1). Urea has often been found to be a poor denaturant for transmembrane helical structures. We attribute the denaturation of GalP helices by urea to the dynamic nature of the transporter structure allowing denaturant access via the substrate binding pocket, as well as to helical structure that extends beyond the membrane. This study gives insight into the final, critical folding step involving recovery of ligand binding for a multidomain membrane transporter.
Collapse
|
12
|
Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS. 19F NMR Analysis of the Antimicrobial Peptide PGLa Bound to Native Cell Membranes from Bacterial Protoplasts and Human Erythrocytes. J Am Chem Soc 2010; 132:8822-4. [DOI: 10.1021/ja101608z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Ieronimo
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| | - Katja Koch
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| | - Marina Berditsch
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany, and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P.O. Box 3640,76021 Karlsruhe, Germany
| |
Collapse
|
13
|
Patching SG. Efficient syntheses of 13C- and 14C-labelled 5-benzyl and 5-indolylmethyl L-hydantoins. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|