1
|
Maestri E, Pavlicevic M, Montorsi M, Marmiroli N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr Rev Food Sci Food Saf 2018; 18:3-30. [PMID: 33337011 DOI: 10.1111/1541-4337.12402] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Amino acid (AA) sequences of 807 bioactive peptides from foods of animal origin were examined in order to correlate peptide structure with activity (antihypertensive, antioxidative, immunomodulatory, antimicrobial, hypolipidemic, antithrombotic, and opioid) and stability in vivo. Food sources, such as milk, meat, eggs, and marine products, show different frequencies of bioactive peptides exhibiting specific effects. There is a correlation of peptide structure and effect, depending on type and position of AA. Opioid peptides contain a high percentage of aromatic AA residues, while antimicrobial peptides show an excess of positively charged AAs. AA residue position is significant, with those in the first and penultimate positions having the biggest effects on peptide activity. Peptides that have activity in vivo contain a high percentage (67%) of proline residues, but the positions of proline in the sequence depend on the length of the peptide. We also discuss the influence of processing on activity of these peptides, as well as methods for predicting release from the source protein and activity of peptides.
Collapse
Affiliation(s)
- Elena Maestri
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Milica Pavlicevic
- Inst. for Food Technology and Biochemistry, Faculty of Agriculture, Univ. of Belgrade, Belgrade, Serbia
| | - Michela Montorsi
- Dept. of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open Univ., Via F. Daverio 7, 20122, Milan, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy.,Inst. of Bioimaging and Molecular Physiology, National Council of Research (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Nelson Marmiroli
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy
| |
Collapse
|
2
|
Hao Y, Yang N, Teng D, Wang X, Mao R, Wang J. A review of the design and modification of lactoferricins and their derivatives. Biometals 2018; 31:331-341. [PMID: 29455278 DOI: 10.1007/s10534-018-0086-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Collapse
Affiliation(s)
- Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,R & D Center, Beijing Shengtai Clouds Bio-Technology, Inc., Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
3
|
Bruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, Corona A, Dosio F. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine. Molecules 2016; 21:E752. [PMID: 27294909 PMCID: PMC6273662 DOI: 10.3390/molecules21060752] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).
Collapse
Affiliation(s)
- Natascia Bruni
- Istituto Farmaceutico Candioli, Beinasco (To) 10092, Italy.
| | | | - Elena Biasibetti
- Department of Veterinary Sciences, University of Torino, Torino 10095, Italy.
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10123, Italy.
| | - Simona Cirrincione
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10123, Italy.
| | | | | | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, Torino 10125, Italy.
| |
Collapse
|
4
|
Loh TC, Thu TV, Foo HL, Bejo MH. Effects of different levels of metabolite combination produced byLactobacillus plantarumon growth performance, diarrhoea, gut environment and digestibility of postweaning piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2012.741046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|