1
|
Sharifi S, Islam MM, Sharifi H, Islam R, Huq TN, Nilsson PH, Mollnes TE, Tran KD, Patzer C, Dohlman CH, Patra HK, Paschalis EI, Gonzalez-Andrades M, Chodosh J. Electron Beam Sterilization of Poly(Methyl Methacrylate)-Physicochemical and Biological Aspects. Macromol Biosci 2021; 21:e2000379. [PMID: 33624923 PMCID: PMC8147572 DOI: 10.1002/mabi.202000379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Electron beam (E-beam) irradiation is an attractive and efficient method for sterilizing clinically implantable medical devices made of natural and/or synthetic materials such as poly(methyl methacrylate) (PMMA). As ionizing irradiation can affect the physicochemical properties of PMMA, understanding the consequences of E-beam sterilization on the intrinsic properties of PMMA is vital for clinical implementation. A detailed assessment of the chemical, optical, mechanical, morphological, and biological properties of medical-grade PMMA after E-beam sterilization at 25 and 50 kiloGray (kGy) is reported. Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry studies indicate that E-beam irradiation has minimal effect on the chemical properties of the PMMA at these doses. While 25 kGy irradiation does not alter the mechanical and optical properties of the PMMA, 50 kGy reduces the flexural strength and transparency by 10% and 2%, respectively. Atomic force microscopy demonstrates that E-beam irradiation reduces the surface roughness of PMMA in a dose dependent manner. Live-Dead, AlamarBlue, immunocytochemistry, and complement activation studies show that E-beam irradiation up to 50 kGy has no adverse effect on the biocompatibility of the PMMA. These findings suggest that E-beam irradiation at 25 kGy may be a safe and efficient alternative for PMMA sterilization.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
| | - Tahmida N Huq
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
- Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, 45027, Sweden
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
- Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, 9019, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Khoa D Tran
- Vision Research Laboratory, Lions VisionGift, Portland, OR, 97214, USA
| | - Corrina Patzer
- Vision Research Laboratory, Lions VisionGift, Portland, OR, 97214, USA
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, CB3 0AS, UK
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, 14004, Spain
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
2
|
Mzir T, Khemici MW, Dahmane M, Mzir M, Doulache N. Dielectric characterization of polyvinyl chloride/polymethyl methacrylate (PVC/PMMA) blends by TSDC technique. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1484417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- T. Mzir
- Physics Faculty, University of Sciences and Technology Houari Boumediene (USTHB) El-Alia, Algeria
| | - M. W. Khemici
- Department of Physics Sciences Faculty, University of M'Hamed Bougara, Boumerdes, Algeria
| | - M. Dahmane
- Chemistry Faculty, University of Sciences and Technology Houari Boumediene (USTHB) El-Alia, Algeria
| | - M. Mzir
- Engineering Faculty, University of M'Hamed Bougara, Boumerdes, Algeria
| | - N. Doulache
- Physics Faculty, University of Sciences and Technology Houari Boumediene (USTHB) El-Alia, Algeria
| |
Collapse
|