1
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
2
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
3
|
Yan J, Wang L, Zhao C, Xiang D, Li H, Lai J, Wang B, Li Z, Lu H, Zhou H, Wu Y. Stretchable Semi-Interpenetrating Carboxymethyl Guar Gum-Based Composite Hydrogel for Moisture-Proof Wearable Strain Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1061-1071. [PMID: 36623252 DOI: 10.1021/acs.langmuir.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wearable strain sensors of conductive hydrogels have very broad application prospects in electronic skins and human-machine interfaces. However, conductive hydrogels suffer from unstable signal transmission due to environmental humidity and inherent shortcomings of their materials. Herein, we introduce a novel moisture-proof conductive hydrogel with high toughness (2.89 MJ m-3), mechanical strength (1.00 MPa), and high moisture-proof sensing performance by using dopamine-functionalized gold nanoparticles as conductive fillers into carboxymethyl guar gum and acrylamide. Moreover, the hydrogel can realize real-time monitoring of major and subtle human movements with good sensitivity and repeatability. In addition, the hydrogel-assembled strain sensor exhibits stable sensing signals after being left for 1 h, and the relative resistance change rate under different strains (25-300%) shows no obvious noise signal up to 99% relative humidity. Notably, the wearable strain sensing is suitable for wearable sensor devices with high relative humidity.
Collapse
Affiliation(s)
- Jiao Yan
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Li Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Chunxia Zhao
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Dong Xiang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hui Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Jingjuan Lai
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Bin Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu610500, China
| |
Collapse
|
4
|
Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, Characterization and biomedical evaluations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Masood F, Makhdoom MA, Channa IA, Gilani SJ, Khan A, Hussain R, Batool SA, Konain K, Rahman SU, Wadood A, bin Jumah MN, Rehman MAU. Development and Characterization of Chitosan and Chondroitin Sulfate Based Hydrogels Enriched with Garlic Extract for Potential Wound Healing/Skin Regeneration Applications. Gels 2022; 8:gels8100676. [PMID: 36286177 PMCID: PMC9601755 DOI: 10.3390/gels8100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels can provide instant relief to pain and facilitate the fast recovery of wounds. Currently, the incorporation of medicinal herbs/plants in polymer matrix is being investigated due to their anti-bacterial and wound healing properties. Herein, we investigated the novel combination of chitosan (CS) and chondroitin sulfate (CHI) to synthesize hydrogels through freeze gelation process and enriched it with garlic (Gar) by soaking the hydrogels in garlic juice for faster wound healing and resistance to microbial growth at the wound surface. The synthesized hydrogels were characterized via Fourier-transform infrared spectroscopy (FTIR), which confirmed the presence of relevant functional groups. The scanning electron microscopy (SEM) images exhibited the porous structure of the hydrogels, which is useful for the sustained release of Gar from the hydrogels. The synthesized hydrogels showed significant inhibition zones against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, cell culture studies confirmed the cyto-compatibility of the synthesized hydrogels. Thus, the novel hydrogels presented in this study can offer an antibacterial effect during wound healing and promote tissue regeneration.
Collapse
Affiliation(s)
- Fatima Masood
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Atif Makhdoom
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (M.A.M.); (M.A.U.R.)
| | - Iftikhar Ahmed Channa
- Thin Film Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Off University Road, Karachi 75270, Pakistan
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad Khan
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Kiran Konain
- Molecular Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Abdul Wadood
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - May Nasser bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
- Correspondence: (M.A.M.); (M.A.U.R.)
| |
Collapse
|
6
|
Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 2021; 181:653-671. [PMID: 33766594 DOI: 10.1016/j.ijbiomac.2021.03.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Guar gum-based drug carrier systems have gained attention for the delivery of various therapeutic agents via different administration routes for attaining controlled and sustained release. Guar gum offers a safe and effective system for drug delivery due to its natural occurrence, easy availability, biocompatibility, and biodegradability, besides simple and mild preparation techniques. Furthermore, the possibility of using various routes such as oral, buccal, transdermal, intravenous, and gene delivery further diversify guar gum applications in the biomedical field. This review delineates the recent investigation on guar gum-based drug carrier systems like hydrogels, nanoparticles, nanocomposites, and scaffolds along with their related delivery routes. Also, the inclusion of data of the loading and subsequent release of the drugs enables to explore the noble and improved drug targeting therapies.
Collapse
Affiliation(s)
- Diksha Verma
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
7
|
Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment. Carbohydr Polym 2021; 251:117095. [DOI: 10.1016/j.carbpol.2020.117095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
|
8
|
Selvi M, Chitra G, Sudarsan S, Franklin DS, Guhanathan S. Novel pH-tunable nontoxic hydrogels of pyrrole-2-carboxylic acid and ethylenediamine derivatives: synthesis and characterization. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1793200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - D. S. Franklin
- Chemistry Facilitator, GeeKay World School, Ranipet, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| |
Collapse
|