1
|
Ni M, Wang Y, Yang Z, Xu X, Zhang H, Yang Y, Zhang L, Chen J. Profiles of total and sn-2 fatty acid of human mature milk and their correlated factors: A cross-sectional study in China. Front Nutr 2022; 9:926429. [PMID: 36071934 PMCID: PMC9441907 DOI: 10.3389/fnut.2022.926429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid (FA) in breast milk is beneficial to the growth and neurodevelopment of infants. However, the structure profiles of breast milk FAs and the influencing factors which are crucial for normal function have not been fully elucidated. This study aimed to characterize the profiles of total and sn-2 FAs in human mature milk based on two representative urban areas in China and explore potential sociodemographic determinants. Mothers (n = 70) at 40–100 d postpartum from Beijing and Danyang were recruited according to unified inclusion and exclusion criteria. Total and sn-2 FA compositions were examined by gas chromatography and quantified. Using the Spearman correlation and multiple regression model, we found that the location and maternal education level were the most conspicuous correlated factor. The milk of mothers from Beijing had higher levels of the n-6 series of long-chain polyunsaturated fatty acids (LCPUFA) (C20:2, C20:3n-6, C20:4n-6, n-6PUFA/n-3PUFA, LA/ALA, and ARA/DHA) than that of Danyang, while the opposite was observed in the n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA). Compared to the milk of mothers with a high school degree or below, those with a bachelor's degree or above had lower SFAs (C10:0, C12:0, C14:0, and Total SFA), n-3 series of LCPUFA (C18:3n-3 and Total n-3PUFA), C18:1n-9t, and higher n-6 series of LCPUFA (C18:2n-6c, C20:2, C20:4n-6, Total n-6PUFA, and n-6PUFA/n-3PUFA). Maternal age, infant gender, pre-conception body mass index (BMI), parity, delivery mode, and gestational weight gain were also associated with total FAs. However, fewer associations were found between the above factors and sn-2 FAs. This study will promote an understanding of human breast milk's lipid profile and help develop a formula more suitable for infants.
Collapse
Affiliation(s)
- Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yingyao Wang
- Chinese Nutrition Society, Beijing, China
- CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute) Beijing Zhongyinghui Nutrition and Health Research Institute, Beijing, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- *Correspondence: Yuexin Yang
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Lishi Zhang
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jinyao Chen
| |
Collapse
|
2
|
Remonatto D, Oliveira JV, Guisan JM, Oliveira D, Ninow J, Fernandez-Lorente G. Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil Solvent-Free. Appl Biochem Biotechnol 2022; 194:2151-2167. [PMID: 35050455 PMCID: PMC9068681 DOI: 10.1007/s12010-021-03774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Lipases are an important group of biocatalysts for many industrial applications. Two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 was immobilized on four different hydrophobic supports: Lewatit-DVB, Purolite-DVB, Sepabeads-C18, and Purolite-C18. The performance of immobilized lipases was investigated in the transesterification of sunflower oil solvent-free in an anhydrous medium. Interesting results were obtained for both lipases and the four supports, but with Sepabeads support the lipases Eversa showed high catalytic activity. However, the more stable and efficient derivative was Eversa® Transform immobilized on Sepabeads C-18. A 98 wt% of ethyl ester of fatty acid (FAEE) was obtained, in 3 h at 40ºC, ethanol/sunflower oil molar ratio of 3:1 and a 10 wt% of the immobilized biocatalyst. After 6 reaction cycles, the immobilized biocatalyst preserved 70 wt% of activity. Both lipases immobilized in Sepabeads C-18 were highly active and stable in the presence of ethanol. The immobilization of Eversa Transform and Eversa Transform 2.0 in hydrophobic supports described in this study appears to be a promising alternative to the immobilization and application of these news lipases still unexplored.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, SP, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - J Manuel Guisan
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, UAM, Cantoblanco, 28049, Madrid, Spain
| | - Débora Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Jorge Ninow
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Alimentación, CIAL (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
He G, Li G, Jiang Y, Hua J, Chu X, Xiong L, Gong J, Xiao G, Ye X. Macronutrient content and fatty acid composition and their positional distribution in human breast milk from Zhejiang Province, China in different lactation periods. Food Sci Nutr 2021; 9:6746-6761. [PMID: 34925804 PMCID: PMC8645764 DOI: 10.1002/fsn3.2626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Lactational changes in macronutrient content, lipid profile, fatty acid composition, and positional distribution of human breast milk were investigated in this study. A total of 378 milk samples of six different lactation periods, including 0‒5, 6‒14, 15‒30, 31‒90, 91‒180, and 181‒360 days, were collected cross-sectionally from healthy lactating women in Zhejiang, China. As lactation progressed from 0‒5 to 15‒30 days, the lipid content and the percentages of C10:0, C12:0, C14:0, C18:2n-6, and C18:3n-3 increased significantly, while the protein concentration and the proportions of phospholipids, cholesterols, C16:0, C18:1n-9, C24:1n-9, C20:4n-6, C22:4n-6, C22:5n-3, and C22:6n-3 decreased notably. When lactation was further extended to 181‒360 days, the protein content continued to decrease, and the percentages of C12:0 and C14:0 continued to increase, whereas the levels of other tested nutrients remained stable. Although the triacylglycerol positional distributions of some fatty acids underwent significant lactational variations, C14:0, C16:0, C24:1n-9, C22:4n-6, C22:5n-3, and C22:6n-3 were located mainly at the sn-2 position, while C18:1n-9, C18:2n-6, and C18:3n-3 were primarily distributed at the sn-1,3 positions. Compared with human breast milk reported in Western countries, samples in our study demonstrated higher percentages of C18:2n-6, C18:3n-3, C20:4n-6, and C22:6n-3, but lower proportions of C12:0, C14:0, and C18:1n-9. The results from this study indicated a nutritional composition different from that of the Western countries and may provide useful data for the development of infant formulas closer to Chinese breast milk in terms of the fatty acid composition and its specified positional distribution on triglyceride structure.
Collapse
Affiliation(s)
- Guanghua He
- Department of Food Science and NutritionZhejiang UniversityHangzhouChina
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Guipu Li
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Yanxi Jiang
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Jiacai Hua
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Xiaojun Chu
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Lina Xiong
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Jinyan Gong
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Gongnian Xiao
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Xingqian Ye
- Department of Food Science and NutritionZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts 2020. [DOI: 10.3390/catal10040414] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Residual oil from babassu (Orbignya sp.), a low-cost raw material, was used in the enzymatic esterification for biodiesel production, using lipase B from Candida antarctica (Novozym® 435) and ethanol. For the first time in the literature, residual babassu oil and Novozym® 435 are being investigated to obtain biodiesel. In this communication, response surface methodology (RSM) and a central composite design (CCD) were used to optimize the esterification and study the effects of four factors (molar ratio (1:1–1:16, free fatty acids (FFAs) /alcohol), temperature (30–50 °C), biocatalyst content (0.05–0.15 g) and reaction time (2–6 h)) in the conversion into fatty acid ethyl esters. Under optimized conditions (1:18 molar ratio (FFAs/alcohol), 0.14 g of Novozym® 435, 48 °C and 4 h), the conversion into ethyl esters was 96.8%. It was found that after 10 consecutive cycles of esterification under optimal conditions, Novozym® 435 showed a maximum loss of activity of 5.8%, suggesting a very small change in the support/enzyme ratio proved by Fourier Transform Infrared (FTIR) spectroscopy and insignificant changes in the surface of Novozym® 435 proved by scanning electron microscopy (SEM) after the 10 consecutive cycles of esterification.
Collapse
|
5
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
6
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
7
|
Gonçalves MCP, Kieckbusch TG, Perna RF, Fujimoto JT, Morales SAV, Romanelli JP. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Alcántara AR, García-Junceda E, Gotor V, Plou FJ. Biocatalysis in Spain: A field of success and innovation. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1420064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas (QUICIFARM), Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Oviedo, Spain
| | | |
Collapse
|