1
|
de Andrade B, Renard G, Gennari A, Artico LL, Júnior JR, Kuhn D, Salles PPZ, Volken de Souza CF, Roth G, Chies JM, Yunes JA, Basso LA. Production Process Optimization of Recombinant Erwinia carotovoral-Asparaginase II in Escherichia coli Fed-Batch Cultures and Analysis of Antileukemic Potential. ACS OMEGA 2024; 9:34951-34963. [PMID: 39157126 PMCID: PMC11325515 DOI: 10.1021/acsomega.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The aims of this work were to optimize the production of Erwinia carotovoral-asparaginase II enzyme in Escherichia coli by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (∼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/gglucose, 3660 U/gcells, and 3260 U/(L·h), respectively. This condition was efficient for achieving high yields of the recombinant enzyme, which was purified and used in in vitro antileukemic potential tests. Of all the leukemic cell lines tested, RS4;11 showed the highest sensitivity to rASNase, with an IC50 value of approximately 0.0006 U/mL and more than 70% apoptotic cells. The study demonstrated that the cultivation strategies used were efficient for obtaining high yield and productivity of rASNase with therapeutic potential inasmuch as cytotoxic activity and induction of apoptosis were demonstrated for this protein.
Collapse
Affiliation(s)
- Bruna
Coelho de Andrade
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Gaby Renard
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Adriano Gennari
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Leonardo Luís Artico
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - José Ricardo
Teixeira Júnior
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Daniel Kuhn
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Priscila Pini Zenatti Salles
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Claucia Fernada Volken de Souza
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Gustavo Roth
- Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jocelei Maria Chies
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - José Andrés Yunes
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Department
of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Augusto Basso
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
2
|
Wan S, Liu X, Sun W, Lv B, Li C. Current advances for omics-guided process optimization of microbial manufacturing. BIORESOUR BIOPROCESS 2023; 10:30. [PMID: 38647562 PMCID: PMC10992112 DOI: 10.1186/s40643-023-00647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/25/2023] [Indexed: 04/25/2024] Open
Abstract
Currently, microbial manufacturing is widely used in various fields, such as food, medicine and energy, for its advantages of greenness and sustainable development. Process optimization is the committed step enabling the commercialization of microbial manufacturing products. However, the present optimization processes mainly rely on experience or trial-and-error method ignoring the intrinsic connection between cellular physiological requirement and production performance, so in many cases the productivity of microbial manufacturing could not been fully exploited at economically feasible cost. Recently, the rapid development of omics technologies facilitates the comprehensive analysis of microbial metabolism and fermentation performance from multi-levels of molecules, cells and microenvironment. The use of omics technologies makes the process optimization more explicit, boosting microbial manufacturing performance and bringing significant economic benefits and social value. In this paper, the traditional and omics technologies-guided process optimization of microbial manufacturing are systematically reviewed, and the future trend of process optimization is prospected.
Collapse
Affiliation(s)
- Shengtong Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Gennari A, Simon R, de Andrade BC, Kuhn D, Renard G, Chies JM, Volpato G, Volken de Souza CF. Recombinant Production in Escherichia coli of a β-galactosidase Fused to a Cellulose-binding Domain Using Low-cost Inducers in Fed-batch Cultivation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Singh RV, Sambyal K. β-galactosidase as an industrial enzyme: production and potential. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Nickel-Functionalized Chitosan for the Oriented Immobilization of Histidine-Tagged Enzymes: A Promising Support for Food Bioprocess Applications. Catal Letters 2022. [DOI: 10.1007/s10562-021-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mou JH, Tahar IB, Wang ZY, Ong KL, Li C, Qin ZH, Wang X, Lin CSK, Fickers P. Enhancing the recombinant protein productivity of Yarrowia lipolytica using insitu fibrous bed bioreactor. BIORESOURCE TECHNOLOGY 2021; 340:125672. [PMID: 34352642 DOI: 10.1016/j.biortech.2021.125672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ability of Yarrowia lipolytica to produce the recombinant lipase CalB from Candida antarctica, used as a model protein has been compared across different bioreactor processes using glycerol, a byproduct from the biodiesel industry as the main carbon source. Batch, pulsed fed-batch (PFB), and continuous fed-batch (CFB) strategies were first compared using classical stirred tank (STR) bioreactors in terms of biomass production, carbon source uptake, and lipase production. Additionally, an in situ fibrous bed bioreactor (isFBB) was developed using sugarcane bagasse as a cell immobilization support. The maximum lipase titer achieved using the isFBB culture mode was 38%, 33%, and 49% higher than those obtained using the batch, PFB, and CFB cultures, respectively. The lipase productivity in isFBB mode (142U/mL/h) was 1.4-fold higher than that obtained using batch free cell cultures. These results highlight that isFBB is an efficient technology for the production of recombinant enzymes.
Collapse
Affiliation(s)
- Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Zhen-Yao Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2B, 5030, Gembloux, Belgium
| |
Collapse
|
7
|
de Andrade BC, Gennari A, Renard G, Nervis BDR, Benvenutti EV, Costa TMH, Nicolodi S, da Silveira NP, Chies JM, Volpato G, Volken de Souza CF. Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model. Int J Biol Macromol 2021; 184:159-169. [PMID: 34126150 DOI: 10.1016/j.ijbiomac.2021.06.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (Fe3O4-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed. The load of 600 Uenzyme/gsupport showed the highest recovered activity value (~50%). After the immobilization process, the recombinant β-galactosidase (HisGal) showed increased substrate affinity and greater thermal stability (~50×) compared to the free enzyme. The immobilized β-galactosidase was employed in batch processes for lactose hydrolysis of skim milk and cheese whey, resulting in hydrolysis rates higher than 50% after 15 cycles of reuse. The support used was obtained in the present study without modifying chemical agents. The support easily recovered from the reaction medium due to its magnetic characteristics. The iron nanoparticles functionalized with histidine and nickel were efficient in the oriented immobilization of the recombinant β-galactosidase, showing its potential application in other high-molecular-weight enzymes.
Collapse
Affiliation(s)
- Bruna Coelho de Andrade
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Gaby Renard
- National Institute of Science and Technology in Tuberculosis, Research Center for Molecular and Functional Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Sabrina Nicolodi
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Giandra Volpato
- Biotechnology course, Federal Institute of Education, Science, and Technology of Rio Grande do Sul - IFRS, Porto Alegre Campus, Porto Alegre, RS, Brazil
| | | |
Collapse
|
8
|
Duarte LS, Matte CR, Dall Cortivo PR, Nunes JES, Barsé LQ, Bizarro CV, Ayub MAZ. Expression of Bacillus amyloliquefaciens transglutaminase in recombinant E. coli under the control of a bicistronic plasmid system in DO-stat fed-batch bioreactor cultivations. Braz J Microbiol 2021; 52:1225-1233. [PMID: 34008152 DOI: 10.1007/s42770-021-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.
Collapse
Affiliation(s)
- Lovaine Silva Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Paulo Roberto Dall Cortivo
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - José Eduardo Sacconi Nunes
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Laisa Quadros Barsé
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil.
| |
Collapse
|
9
|
Gennari A, Simon R, de Andrade BC, Saraiva Macedo Timmers LF, Milani Martins VL, Renard G, Chies JM, Volpato G, Volken de Souza CF. Production of beta-galactosidase fused to a cellulose-binding domain for application in sustainable industrial processes. BIORESOURCE TECHNOLOGY 2021; 326:124747. [PMID: 33517047 DOI: 10.1016/j.biortech.2021.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant β-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Vera Lúcia Milani Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
10
|
Liu E, Segato F, Wilkins MR. Fed-batch production of Thermothelomyces thermophilus lignin peroxidase using a recombinant Aspergillus nidulans strain in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2021; 325:124700. [PMID: 33461124 DOI: 10.1016/j.biortech.2021.124700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic lignin depolymerization is considered a favorable approach to utilize lignin due to the higher selectivity and less energy requirement when compared to thermochemical lignin valorization. Lignin peroxidase (LiP) is one of the key enzymes involved in lignin degradation and possesses high redox potential to oxidize non-phenolic structures and phenolic compounds in lignin. However, the production of LiP is mainly from white-rot fungi at small scales. It is critical to discover new LiP from other microorganisms and produce LiP at large scales. This study aims to produce a novel LiP originally from Thermothelomyces thermophiles using a recombinant Aspergillus nidulans strain. The LiP production medium was optimized, and different fed-batch strategies for LiP production were investigated to improve LiP activity, yield, and productivity. Results demonstrated that LiP production was enhanced by using multi-pulse fed-batch fermentation. A maximum LiP activity of 1,645 mU/L with a protein concentration of 0.26 g/L was achieved.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
11
|
Salazar S, Gutiérrez N, Sánchez O, Ramos E, González A, Acosta J, Ramos T, Altamirano C, Toledo J, Montesino R. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Mobayed FH, Nunes JC, Gennari A, de Andrade BC, Ferreira MLV, Pauli P, Renard G, Chies JM, Volpato G, Volken de Souza CF. Effect of by-products from the dairy industry as alternative inducers of recombinant β-galactosidase expression. Biotechnol Lett 2020; 43:589-599. [PMID: 33052483 DOI: 10.1007/s10529-020-03028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the efficiency of lactose derived from cheese whey and cheese whey permeate as inducer of recombinant Kluyveromyces sp. β-galactosidase enzyme produced in Escherichia coli. Two E. coli strains, BL21(DE3) and Rosetta (DE3), were used in order to produce the recombinant enzyme. Samples were evaluated for enzyme activity, total protein content, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis after induction with isopropyl-β-D-1-thiogalactoside (IPTG) (0.05 and 1 mM) and lactose, cheese whey, and cheese whey permeate solutions (1, 10, and 20 g/L lactose) at shake-flask cultivation, and whey permeate solution (10 g/L lactose) at bioreactor scale. RESULTS The highest specific activities obtained with IPTG as inducer (0.05 mM) after 9 h of induction, were 23 and 33 U/mgprotein with BL21(DE3) and Rosetta(DE3) strains, respectively. Inductions performed with lactose and cheese whey permeate (10 and 20 g/L lactose) showed the highest specific activities at the evaluated hours, exhibiting better results than those obtained with IPTG. Specific activity of recombinant β-galactosidase using whey permeate (10 g/L lactose) showed values of approximately 46 U/mgprotein after 24-h induction at shake-flask study, and approximately 26 U/mgprotein after 16-h induction at bench bioreactor. CONCLUSIONS The induction with cheese whey permeate was more efficient for recombinant β-galactosidase expression than the other inducers tested, and thus, represents an alternative form to reduce costs in recombinant protein production.
Collapse
Affiliation(s)
- Francielle Herrmann Mobayed
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
| | - Juliane Carraro Nunes
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Matheus Loch Velvites Ferreira
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Paolla Pauli
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
13
|
Chi L, Wei J, Hou J, Wang J, Hu X, He P, Wei T. Optimizing the DO-stat protocol for enhanced production of thermostable pullulanase in Escherichia coli by using oxygen control strategies. J Food Biochem 2020; 44:e13173. [PMID: 32150658 DOI: 10.1111/jfbc.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/18/2023]
Abstract
Production of a thermostable pullulanase by DO-stat fed-batch fermentation of recombinant Escherichia coli BL 21 was investigated in a 5 L of fermentor. The effect of three oxygen control strategies, glucose feedback, shifting fermentor pressure, and adding oxygen-enriched air, on cell growth and pullulanase expression were examined. The oxygen-transfer capacity was found to be enhanced with increasing fermentor pressure and oxygen ratio in oxygen-enriched air, but the cell growth and pullulanase production were restrained under high fermentor pressure. The highest cell density and pullulanase activity reached 55.1 g/L and 412 U/mL, respectively, in the case by adding oxygen-enriched air, which was suggested as an effective approach to enhance both cell growth and pullulanase production. PRACTICAL APPLICATIONS: This thermostable pullulanase displayed optimal activity at 90°C and pH 5.4, which could be applied for one-step saccharification of starch biomass. The optimization of the DO-stat fed-batch fermentation in high cell density level would provide a research basis for its industrialization.
Collapse
Affiliation(s)
- Lei Chi
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiajia Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junchao Hou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingyu Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Peixin He
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tao Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
14
|
Han Q, Eiteman MA. Acetate formation during recombinant protein production in Escherichia coli K-12 with an elevated NAD(H) pool. Eng Life Sci 2019; 19:770-780. [PMID: 32624970 DOI: 10.1002/elsc.201900045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Acetate formation is a disadvantage in the use of Escherichia coli for recombinant protein production, and many studies have focused on optimizing fermentation processes or altering metabolism to eliminate acetate accumulation. In this study, E. coli MEC697 (MG1655 nadR nudC mazG) maintained a larger pool of NAD(H) compared to the wild-type control, and also accumulated lower concentrations of acetate when grown in batch culture on glucose. In steady-state cultures, the elevated total NAD(H) found in MEC697 delayed the threshold dilution rate for acetate formation to a growth rate of 0.27 h-1. Batch and fed-batch processes using MEC697 were examined for the production of β-galactosidase as a model recombinant protein. Fed-batch culture of MEC697/pTrc99A-lacZ compared to MG1655/pTrc99A-lacZ at a growth rate of 0.22 h-1 showed only a modest increase of protein formation. However, 1 L batch growth of MEC697/pTrc99A-lacZ resulted in 50% lower acetate formation compared to MG1655/pTrc99A-lacZ and a two-fold increase in recombinant protein production.
Collapse
Affiliation(s)
- Qi Han
- School of Chemical Materials and Biomedical Engineering University of Georgia Athens GA USA
| | - Mark A Eiteman
- School of Chemical Materials and Biomedical Engineering University of Georgia Athens GA USA
| |
Collapse
|
15
|
Andreaus J, Camassola M, de Oliveira Faber M, Santana Ferreira-Leitão V. EDITORIAL – ENZITEC special edition 2016 industrial applications of enzymes in Brazil. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1543282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jürgen Andreaus
- Department of Chemistry, Universidade Regional de Blumenau, 89030-903 Blumenau, SC, Brazil
| | - Marli Camassola
- Universidade de Caxias do Sul – Instituto de Biotecnologia Laboratório de Enzimas e Biomassa, Caxias do Sul, Brazil
| | - Mariana de Oliveira Faber
- Catalysis Division, Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro, Brazil
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Viridiana Santana Ferreira-Leitão
- Catalysis Division, Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro, Brazil
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|