1
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
3
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
4
|
Xu X, Yan S, Hou X, Song W, Wang L, Wu T, Qi M, Wu J, Rao Y, Wang B, Liu L. Local Electric Field Modulated Reactivity of Pseudomonas aeruginosa Acid Phosphatase for Enhancing Phosphorylation of l-Ascorbic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaodong Hou
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianfu Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
Wohlgemuth R. Key advances in biocatalytic phosphorylations in the last two decades: Biocatalytic syntheses in vitro and biotransformations in vivo (in humans). Biotechnol J 2020; 16:e2000090. [PMID: 33283467 DOI: 10.1002/biot.202000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Indexed: 01/05/2023]
Abstract
Biocatalytic phosphorylation reactions provide several benefits, such as more direct, milder, more selective, and shorter access routes to phosphorylated products. Favorable characteristics of biocatalytic methodologies represent advantages for in vitro as well as for in vivo phosphorylation reactions, leading to important advances in the science of synthesis towards bioactive phosphorylated compounds in various areas. The scope of this review covers key advances of biocatalytic phosphorylation reactions over the last two decades, for biocatalytic syntheses in vitro and for biotransformations in vivo (in humans). From the origins of probiotic life to in vitro synthetic applications and in vivo formation of bioactive pharmaceuticals, the common purpose is to outline the importance, relevance, and underlying connections of biocatalytic phosphorylations of small molecules. Asymmetric phosphorylations attracting increased attention are highlighted. Phosphohydrolases, phosphotransferases, phosphorylases, phosphomutases, and other enzymes involved in phosphorus chemistry provide powerful toolboxes for resource-efficient and selective in vitro biocatalytic syntheses of phosphorylated metabolites, chiral building blocks, pharmaceuticals as well as in vivo enzymatic formation of biologically active forms of pharmaceuticals. Nature's large diversity of phosphoryl-group-transferring enzymes, advanced enzyme and reaction engineering toolboxes make biocatalytic asymmetric phosphorylations using enzymes a powerful and privileged phosphorylation methodology.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland.,Swiss Coordination Committee Biotechnology, Zurich, Switzerland
| |
Collapse
|
6
|
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol 2020; 60:113-123. [PMID: 33045418 DOI: 10.1016/j.nbt.2020.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
In the area of human-made innovations to improve the quality of life, biocatalysis has already had a great impact and contributed enormously to a growing number of catalytic transformations aimed at the detection and analysis of compounds, the bioconversion of starting materials and the preparation of target compounds at any scale, from laboratory small scale to industrial large scale. The key enabling tools which have been developed in biocatalysis over the last decades also provide great opportunities for further development and numerous applications in various sectors of the global bioeconomy. Systems biocatalysis is a modular, bottom-up approach to designing the architecture of enzyme-catalyzed reaction steps in a synthetic route from starting materials to target molecules. The integration of biocatalysis and sustainable chemistry in vitro aims at ideal conversions with high molecular economy and their intensification. Retrosynthetic analysis in the chemical and biological domain has been a valuable tool for target-oriented synthesis while, on the other hand, diversity-oriented synthesis builds on forward-looking analysis. Bioinformatic tools for rapid identification of the required enzyme functions, efficient enzyme production systems, as well as generalized bioprocess design tools, are important for rapid prototyping of the biocatalytic reactions. The tools for enzyme engineering and the reaction engineering of each enzyme-catalyzed one-step reaction are also valuable for coupling reactions. The tools to overcome interaction issues with other components or enzymes are of great interest in designing multi-step reactions as well as in biocatalytic total synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland; Swiss Coordination Committee on Biotechnology (SKB), Nordstrasse 15, 8021 Zürich, Switzerland.
| |
Collapse
|
7
|
Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1634694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|