Serrano-Aguirre L, Velasco-Bucheli R, García-Álvarez B, Saborido A, Arroyo M, de la Mata I. Novel Bifunctional Acylase from
Actinoplanes utahensis: A Versatile Enzyme to Synthesize Antimicrobial Compounds and Use in Quorum Quenching Processes.
Antibiotics (Basel) 2021;
10:antibiotics10080922. [PMID:
34438972 PMCID:
PMC8388760 DOI:
10.3390/antibiotics10080922]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Many intercellular communication processes, known as quorum sensing (QS), are regulated by the autoinducers N-acyl-l-homoserine lactones (AHLs) in Gram-negative bacteria. The inactivation of these QS processes using different quorum quenching (QQ) strategies, such as enzymatic degradation of the autoinducers or the receptor blocking with non-active analogs, could be the basis for the development of new antimicrobials. This study details the heterologous expression, purification, and characterization of a novel N-acylhomoserine lactone acylase from Actinoplanes utahensis NRRL 12052 (AuAHLA), which can hydrolyze different natural penicillins and N-acyl-homoserine lactones (with or without 3-oxo substitution), as well as synthesize them. Kinetic parameters for the hydrolysis of a broad range of substrates have shown that AuAHLA prefers penicillin V, followed by C12-HSL. In addition, AuAHLA inhibits the production of violacein by Chromobacterium violaceum CV026, confirming its potential use as a QQ agent. Noteworthy, AuAHLA is also able to efficiently synthesize penicillin V, besides natural AHLs and phenoxyacetyl-homoserine lactone (POHL), a non-natural analog of AHLs that could be used to block QS receptors and inhibit signal of autoinducers, being the first reported AHL acylase capable of synthesizing AHLs.
Collapse