1
|
Backes E, Alnoch RC, Contato AG, Castoldi R, de Souza CGM, Kato CG, Peralta RA, Peralta Muniz Moreira RDF, Polizeli MDLTM, Bracht A, Peralta RM. Properties and kinetic behavior of free and immobilized laccase from Oudemansiella canarii: Emphasis on the effects of NaCl and Na 2SO 4 on catalytic activities. Int J Biol Macromol 2024; 281:136565. [PMID: 39406328 DOI: 10.1016/j.ijbiomac.2024.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Studies have highlighted the great potential of Oudemansiella canarii laccase in degrading synthetic dyes for reducing their toxicity. Immobilization of enzymes improves usability in degradation processes and the present work succeeded in immobilizing this laccase onto MANAE-agarose. Immobilization improved pH, thermal, and storage stabilities. Both, free and immobilized enzymes presented Michaelis-Menten kinetics with the substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with Km values of 0.056 ± 0.003 and 0.195 ± 0.022 mM, respectively. Immobilization increased Vmax 1.27-fold. NaCl caused incomplete (hyperbolic) inhibition, which was satisfactorily described by the one-substrate one-modifier mechanism. Immobilization reduced the maximal inhibition by NaCl from 80.2 to 55.7 %. The effect of Na2SO4 was predominantly stimulation, but inhibition of the free enzyme occurred at high substrate concentrations. Stimulation of the immobilized enzyme by Na2SO4 was much more pronounced. It strongly depended on the substrate concentration and was much stronger (up to 300 %) at low substrate concentrations. The combined effects of substrate and sulfate on the immobilized laccase could be satisfactorily described by the one-substrate one-modifier mechanism. The modified response of the immobilized O. canarii laccase to NaCl and Na2SO4 considerably favors its use as a tool in bioremediation processes because environmental contamination by salts frequently represents a strong operational challenge.
Collapse
Affiliation(s)
- Emanueli Backes
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Alex Graça Contato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Castoldi
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Gabriel Kato
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Rosely Aparecida Peralta
- Post-Graduate Program in Chemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil; School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
2
|
Umar A, Abid I, Antar M, Dufossé L, Hajji-Hedfi L, Elshikh MS, Shahawy AE, Abdel-Azeem AM. Electricity generation and oxidoreductase potential during dye discoloration by laccase-producing Ganoderma gibbosum in fungal fuel cell. Microb Cell Fact 2023; 22:258. [PMID: 38098010 PMCID: PMC10720082 DOI: 10.1186/s12934-023-02258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Color chemicals contaminate pure water constantly discharged from different points and non-point sources. Physical and chemical techniques have certain limitations and complexities for bioenergy production, which motivated the search for a novel sustainable production approaches during dye wastewater treatment. The emerging environmental problem of dye decolorization has attracted scientist's attention to a new, cheap, and economical way to treat dye wastewater and power production via fungal fuel cells. Ganoderma gibbosum was fitted in the cathodic region with laccase secretion in the fuel cell. At the same time, dye water was placed in the anodic region to move electrons and produce power. This study treated wastewater using the oxidoreductase enzymes released extracellularly from Ganoderma gibbosum for dye Remazol Brilliant Blue R (RBBR) degradation via fungal-based fuel cell. The maximum power density of 14.18 mW/m2 and the maximum current density of 35 mA/m2 were shown by the concentration of 5 ppm during maximum laccase activity and decolorization of RBBR. The laccase catalysts have gained considerable attention because of eco-friendly and alternative easy handling approaches to chemical methods. Fungal Fuel Cells (FFCs) are efficiently used in dye treatment and electricity production. This article also highlighted the construction of fungal catalytic cells and the enzymatic performance of fungal species in energy production during dye water treatment.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed Antar
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), Université de La Réunion, ESIROI Département Agroalimentaire, 15 Avenue René Cassin, 97490, Saint-Denis, France
| | - Lobna Hajji-Hedfi
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, 357, 9100, Sidi Bouzid, Tunisia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University, 41522, Ismailia, Egypt
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, Republic of South Africa
| |
Collapse
|
3
|
George J, Rajendran DS, Senthil Kumar P, Sonai Anand S, Vinoth Kumar V, Rangasamy G. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. CHEMOSPHERE 2023; 313:137612. [PMID: 36563730 DOI: 10.1016/j.chemosphere.2022.137612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In this preset study, porous-cross-linked enzyme aggregates (CLEAs) of Pleurotus ostreatus laccase were utilized for the spontaneous decolorization and detoxification of triarylmethane and azo dyes, reactive blue 2 (RB) and malachite green (MG). The specific surface area and pore radius of the porous-CLEAs are 136.3 m2/g and 19.47 Ao, and the higher specific surface indicated greater biocatalytic efficiency, as increased mass transfer and dye interaction with the CLEAs laccase. CLEAs laccase decolorized 500 ppm of MG and RB with 98.12-58.33% efficiency after 120 min, at pH 5.0 and 50°C, without a mediator. Furthermore, the biotransformation of the MG and RB with immobilized laccase was confirmed with the help of UV-visible spectroscopy, high-performance liquid chromatography, and Fourier transform infrared spectroscopy. The reusability potential of CLEAs was assessed in batch mode for 10 cycles of dye decolorization. The decolorization activities for the immobilized laccase were 89% and 12% at the 6th cycle for MG and RB, respectively. This immobilized enzyme could effectively remove dyes from aqueous solution, and demonstrated significant detoxification in experimental plants (Triticum aestivum and Phaseolus mungo) and plant growth-promoting rhizobacteria (Azospirillum brasilense, Bacillus megaterium, Rhizobium leguminosarum, Bacillus subtilis, and Pseudomonas fluorescens). In conclusion, porous CLEAs laccase could be useful as a potential bioremediation tool for the detoxification and decolorization of dyeing wastewater in future.
Collapse
Affiliation(s)
- Jenet George
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Srinidhi Sonai Anand
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
4
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Yanto DHY, Anita SH, Solihat NN. Enzymatic degradation and metabolic pathway of acid blue 129 dye by crude laccase from newly isolated Trametes hirsuta EDN 082. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Research Collaboration Center for Marine Biomaterials, Jatinangor, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
6
|
Backes E, Kato CG, da Silva TBV, Uber TM, Pasquarelli DL, Bracht A, Peralta RM. Production of fungal laccase on pineapple waste and application in detoxification of malachite green. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:90-101. [PMID: 35103576 DOI: 10.1080/03601234.2022.2025739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The main purpose of this work was to use pineapple crowns as substrate for optimizing laccase production by Trametes versicolor in lab-scale experiments. One-factor-at-the-time analysis and response surface methodology were used to optimize production. A single laccase with molecular weight of 45 kDa was the main protein produced. A maximal laccase activity of 60.73 ± 1.01 U/g was obtained in 7-day cultures, representing a 6.7-fold increase compared to non-optimized conditions. The optimized conditions were temperature: 28 °C; initial moisture: 90%; glucose: 8.38%; yeast extract: 2.86%. Combining activity and stability, the best conditions for using this laccase during the long periods required by large-scale processes are pH 4.0-5.0 and temperature of 40-50 °C. Under these conditions, the crude laccase was efficient in detoxifying the dye malachite green with a KM of 14.33 ± 1.94 µM and a Vmax of 0.482 ± 0.029 µM/min with 0.1 units/mL. It can be concluded that pineapple crown leaves can be effectively used as substrate by T. versicolor for producing laccase under solid-state culture conditions. Laccase is an industrially relevant enzyme and its production with concomitant valorization of pineapple crowns as substrate offers highly interesting perspectives.
Collapse
Affiliation(s)
- Emanueli Backes
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
| | - Camila G Kato
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Tamires B V da Silva
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
| | - Thaís M Uber
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
| | | | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Rosane M Peralta
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| |
Collapse
|
7
|
Bouacem K, Allala F, Zaraî Jaouadi N, Hamdi S, Mechri S, Ighilahriz K, Rekik H, Hacene H, Bouanane-Darenfed A, Jaouadi B. A novel peroxidase from white-rot Agaricomycetes fungus Phlebia radiata strain KB-DZ15: Its purification, characterisation, and potential application for dye-decolorisation and lignin-biodegradation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1939315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Khelifa Bouacem
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences (FBAS), University of Mouloud Mammeri of Tizi-Ouzou (UMMTO), Tizi-Ouzou, Algeria
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Fawzi Allala
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sondes Hamdi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sondes Mechri
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Kahina Ighilahriz
- Central Directorate of Research and Development (CDRD), SONATRACH, Boumerdès, Algeria
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FBS), University of Sciences and Technology of Houari Boumediene (USTHB), Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Andriani A, Yanto DHY. Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1929193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ade Andriani
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, Indonesia
| |
Collapse
|
9
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|