1
|
Semba H, Horiguchi HK, Tsuboi H, Ishikawa K, Koda A. Effects of heterologous expression and N-glycosylation on the hyperthermostable endoglucanase of Pyrococcus furiosus. J Biosci Bioeng 2024; 137:329-334. [PMID: 38461105 DOI: 10.1016/j.jbiosc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of β-1,4-glucosidic linkages in cellulose and β-glucan structures that contain β-1,3- and β-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.
Collapse
Affiliation(s)
- Hironori Semba
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan.
| | - Haruka Kado Horiguchi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Hirokazu Tsuboi
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; Rare Sugar and Enzyme Research, Dep. I, R&D, Matsutani Chemical Industry Co. Ltd., 5-3 Kitaitami, Itami, Hyogo 664-8508, Japan
| | - Akio Koda
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| |
Collapse
|
2
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Singh R, Singh P, Ahmad I, Alkhathami AG, Rai AK, Mishra PK, Singh RP, Srivastava N. Bionanofabrication of Cupric oxide catalyst from Water hyacinth based carbohydrate and its impact on cellulose deconstructing enzymes production under solid state fermentation. Int J Biol Macromol 2023; 252:126377. [PMID: 37595725 DOI: 10.1016/j.ijbiomac.2023.126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible. Herein, a sustainable green synthesis of CuO bionanocatalyst has been performed by using waste leaves of WH. Through XRD, FT-IR, SEM, and TEM analysis, the prepared CuO bionanocatalyst's physicochemical properties have been evaluated. Furthermore, the effect of CuO bionanocatalyst on the temperature stability of raw cellulases was observed, and its half-life stability was found to be up to 9 h at 65 °C. The results presented in the current investigation may have broad scope for mass trials for various industrial applications, such as cellulosic biomass conversion.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, 110007, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - P K Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | | | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Zhao J, Wilkins MR, Wang D. A review on strategies to reduce ionic liquid pretreatment costs for biofuel production. BIORESOURCE TECHNOLOGY 2022; 364:128045. [PMID: 36182017 DOI: 10.1016/j.biortech.2022.128045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Worldwide demand for renewable energy has promoted the considerable exploration of biofuel production from lignocellulosic biomass. Ionic liquid pretreatment is of great interest to render biomass amenable for biofuel production, however, its unaffordable cost stimulates significant attention to the feasibility of commercialization. This review aims to compile the latest advances with respect to reducing production costs for ionic liquids-based biorefineries. Protic ionic liquids offer relatively low synthesis costs, but excessive antisolvent washing of the pretreated biomass is often inevitable. Recovering ionic liquids requires several separation and purification steps, and the reuse of ionic liquids could significantly lose functionality due to the degradation. It is promising to screen ionic liquids-tolerant enzymes and strains for one-pot saccharification and fermentation without solid-liquid separation, however, there is still a need for subsequent recovery of ionic liquids. Additionally, technoeconomic analysis and life cycle assessment are highly recommended to evaluate the economic and environmental impacts.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark R Wilkins
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
6
|
Grewal J, Khare SK, Drewniak L, Pranaw K. Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Enhanced activity of hyperthermostable Pyrococcus horikoshii endoglucanase in superbase ionic liquids. Biotechnol Lett 2022; 44:961-974. [PMID: 35763164 PMCID: PMC9356960 DOI: 10.1007/s10529-022-03268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Objectives Ionic liquids (ILs) that dissolve biomass are harmful to the enzymes that degrade lignocellulose. Enzyme hyperthermostability promotes a tolerance to ILs. Therefore, the limits of hyperthemophilic Pyrococcus horikoschii endoglucanase (PhEG) to tolerate 11 superbase ILs were explored. Results PhEG was found to be most tolerant to 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) in soluble 1% carboxymethylcellulose (CMC) and insoluble 1% Avicel substrates. At 35% concentration, this IL caused an increase in enzyme activity (up to 1.5-fold) with CMC. Several ILs were more enzyme inhibiting with insoluble Avicel than with soluble CMC. Km increased greatly in the presence ILs, indicating significant competitive inhibition. Increased hydrophobicity of the IL cation or anion was associated with the strongest enzyme inhibition and activation. Surprisingly, PhEG activity was increased 2.0–2.5-fold by several ILs in 4% substrate. Cations exerted the main role in competitive inhibition of the enzyme as revealed by their greater binding energy to the active site. Conclusions These results reveal new ways to design a beneficial combination of ILs and enzymes for the hydrolysis of lignocellulose, and the strong potential of PhEG in industrial, high substrate concentrations in aqueous IL solutions. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-022-03268-5.
Collapse
|
8
|
Hirata T, Takekiyo T, Yoshimura Y, Tokoro Y, Ishizaki T, Kizuka Y, Kuroda K. Cryostorage of unstable N-acetylglucosaminyltransferase-V by synthetic zwitterions. RSC Adv 2022; 12:11628-11631. [PMID: 35481097 PMCID: PMC9016413 DOI: 10.1039/d2ra01575g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
We report biocompatible materials for cryostorage of unstable proteins such as cancer-related enzyme, N-acetylglucosaminyltransferase-V (GnT-V). GnT-V activity and the amount of protein after freezing were better retained in synthetic zwitterion solutions than in the glycerol solution. This study highlights the potential utility of synthetic zwitterions as novel cryoprotectants.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy Yokosuka Kanagawa 239-8686 Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy Yokosuka Kanagawa 239-8686 Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University Gifu Gifu 501-1193 Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- NanoMaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
9
|
Shang Y, Li X, Cai G, Wang D, Li F, Lu J, Yu X. Production of recombinant barley xylanase inhibitor in
Pichia pastoris
and its inhibitory effect on premature yeast flocculation. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology 211 Jianjun Road Yancheng Jiangsu 224051 China
| | - Xiaomin Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology and National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Guolin Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology and National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology 211 Jianjun Road Yancheng Jiangsu 224051 China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology 211 Jianjun Road Yancheng Jiangsu 224051 China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology and National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology 211 Jianjun Road Yancheng Jiangsu 224051 China
| |
Collapse
|
10
|
Wang Y, Wang J, Zhang Z, Yang J, Turunen O, Xiong H. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Appl Microbiol Biotechnol 2022; 106:2017-2027. [PMID: 35171339 DOI: 10.1007/s00253-022-11823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
A hyperthermostable xylanase XYN10B from Thermotoga maritima (PDB code 1VBR, GenBank accession number KR078269) was subjected to site-directed and error-prone PCR mutagenesis. From the selected five mutants, the two site-directed mutants (F806H and F806V) showed a 3.3-3.5-fold improved enzyme half-life at 100 °C. The mutant XYNA generated by error-prone PCR showed slightly improved stability at 100 °C and a lower Km. In XYNB and XYNC, the additional mutations over XYNA decreased the thermostability and temperature optimum, while elevating the Km. In XYNC, two large side-chains were introduced into the protein's interior. Micro-differential scanning calorimetry (DSC) showed that the melting temperature (Tm) dropped in XYNB and XYNC from 104.9 °C to 93.7 °C and 78.6 °C, respectively. The detrimental mutations showed that extremely thermostable enzymes can tolerate quite radical mutations in the protein's interior and still retain high thermostability. The analysis of mutations (F806H and F806V) in a hydrophobic area lining the substrate-binding region indicated that active site hydrophobicity is important for high activity at extreme temperatures. Although polar His at 806 provided higher stability, the hydrophobic Phe at 806 provided higher activity than His. This study generates an understanding of how extreme thermostability and high activity are formed in GH10 xylanases. KEY POINTS: • Characterization and molecular dynamics simulations of TmXYN10B and its mutants • Explanation of structural stability of GH10 xylanase.
Collapse
Affiliation(s)
- Yawei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Jing Wang
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Zhongqiang Zhang
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland.
| | - Hairong Xiong
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
11
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
12
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|