1
|
Umehara K, Cleary Y, Fowler S, Parrott N, Tuerck D. Accelerating Clinical Development of Idasanutlin through a Physiologically Based Pharmacokinetic Modeling Risk Assessment for CYP450 Isoenzyme-Related Drug-Drug Interactions. Drug Metab Dispos 2022; 50:214-223. [PMID: 34937801 DOI: 10.1124/dmd.121.000720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Idasanutlin is a potent inhibitor of the p53-MDM2 interaction that enables reactivation of the p53 pathway, which induces cell cycle arrest and/or apoptosis in tumor cells expressing functional p53. It was investigated for the treatment of solid tumors and several hematologic indications such as relapsed/refractory acute myeloid leukemia, polycythemia vera, or non-Hodgkin lymphoma. For safety reasons, it cannot be given in healthy volunteers for drug-drug interaction (DDI) explorations. This triggered the need for in silico explorations on top of the one available CYP3A clinical DDI study with posaconazole in solid tumor patients. Idasanutlin's clearance is dependent on CYP3A4/2C8 forming its major circulating metabolite M4, with contributions from UGT1A3 and biliary excretion. Idasanutlin and M4 have low permeability, very low clearance, and extremely low unbound fraction in plasma (<0.001), which makes in vitro data showing inhibition on CYP3A4/2C8 enzymes challenging to translate to clinical relevance. Physiologically-based pharmacokinetic models of idasanutlin and M4 have been established to simulate perpetrator and victim DDI scenarios and to evaluate whether further DDI studies in oncology patients are necessary. Modeling indicated that idasanutlin and M4 would show no or weak clinical inhibition of selective CYP3A4/2C8 substrates. Co-administered strong CYP3A and CYP2C8 inhibitors might lead to weak or moderate idasanutlin exposure increases, and the strong inducer rifampicin might cause moderate exposure reduction. As the simulated idasanutlin systemic exposure changes would be within the range of observed intrinsic variability, the target population can take co-medications that are either CYP2C8/3A4 inhibitors or weak/moderate CYP2C8/3A4 inducers without dose adjustment. SIGNIFICANCE STATEMENT: Clinical trials for idasanutlin are restricted to cancer patients, which imposes practical, scientific, and ethical challenges on drug-drug interaction investigations. Furthermore, idasanutlin and its major circulating metabolite have very challenging profiles of absorption, distribution, metabolism and excretion including high protein binding, low permeability and a combination of different elimination pathways each with extremely low clearance. Nonetheless, physiologically-based pharmacokinetic models could be established and applied for drug-drug interaction risk assessment and were especially useful to provide guidance on concomitant medications in patients.
Collapse
Affiliation(s)
- Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Yumi Cleary
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Dietrich Tuerck
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
2
|
Venugopal S, Shoukier M, Konopleva M, Dinardo CD, Ravandi F, Short NJ, Andreeff M, Borthakur G, Daver N, Pemmaraju N, Sasaki K, Montalban-Bravo G, Marx KR, Pierce S, Popat UR, Shpall EJ, Kanagal-Shamanna R, Garcia-Manero G, Kantarjian HM, Kadia TM. Outcomes in patients with newly diagnosed TP53-mutated acute myeloid leukemia with or without venetoclax-based therapy. Cancer 2021; 127:3541-3551. [PMID: 34182597 DOI: 10.1002/cncr.33675] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Venetoclax (VEN) in combination with a hypomethylating agent (HMA) has become the standard of care for patients aged >75 years and for those not eligible for intensive chemotherapy who have newly diagnosed acute myeloid leukemia (AML). The benefit of VEN-based therapy in patients who have newly diagnosed AML with mutations in the TP53 gene (TP53mut ) over standard therapy is undefined. METHODS In this single-institutional, retrospective analysis, the authors assessed the clinical outcomes of 238 patients with newly diagnosed TP53mut AML and compared the clinical characteristics, response to different therapies, and outcomes of those who received VEN-based (n = 58) and non-VEN-based (n = 180) regimens. RESULTS Patients who received VEN-based regimens were older (aged >65 years: 81% vs 65%; P = .02) and had higher response rates (complete remission, 43% vs 32%; P = .06) than those who received non-VEN-based regimens. Compared with patients who received non-VEN-based regimens, no difference in overall survival (median, 6.6 vs 5.7 months; P = .4) or relapse-free survival (median, 4.7 vs 3.5 months; P = .43) was observed in those who received VEN-based regimens, regardless of age or intensity of treatment. CONCLUSIONS The addition of VEN to standard treatment regimens did not improve outcomes in younger or older patients who had TP53mut AML. These data highlight the need for novel therapies beyond VEN to improve the outcome of patients with TP53mut AML.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mahran Shoukier
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kayleigh R Marx
- Department of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uday R Popat
- Department of Stem Cell Transplant, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplant, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Almatroodi SA, Alsahli MA, Almatroudi A, Verma AK, Aloliqi A, Allemailem KS, Khan AA, Rahmani AH. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021; 26:molecules26051315. [PMID: 33804548 PMCID: PMC7957552 DOI: 10.3390/molecules26051315] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphenolic flavonoids are considered natural, non-toxic chemopreventers, which are most commonly derived from plants, fruits, and vegetables. Most of these polyphenolics exhibit remarkable antioxidant, anti-inflammatory, and anticancer properties. Quercetin (Qu) is a chief representative of these polyphenolic compounds, which exhibits excellent antioxidant and anticancer potential, and has attracted the attention of researchers working in the area of cancer biology. Qu can regulate numerous tumor-related activities, such as oxidative stress, angiogenesis, cell cycle, tumor necrosis factor, proliferation, apoptosis, and metastasis. The anticancer properties of Qu mainly occur through the modulation of vascular endothelial growth factor (VEGF), apoptosis, phosphatidyl inositol-3-kinase (P13K)/Akt (proteinase-kinase B)/mTOR (mammalian target of rapamycin), MAPK (mitogen activated protein kinase)/ERK1/2 (extracellular signal-regulated kinase 1/2), and Wnt/β-catenin signaling pathways. The anticancer potential of Qu is documented in numerous in vivo and in vitro studies, involving several animal models and cell lines. Remarkably, this phytochemical possesses toxic activities against cancerous cells only, with limited toxic effects on normal cells. In this review, we present extensive research investigations aimed to discuss the therapeutic potential of Qu in the management of different types of cancers. The anticancer potential of Qu is specifically discussed by focusing its ability to target specific molecular signaling, such as p53, epidermal growth factor receptor (EGFR), VEGF, signal transducer and activator of transcription (STAT), PI3K/Akt, and nuclear factor kappa B (NF-κB) pathways. The anticancer potential of Qu has gained remarkable interest, but the exact mechanism of its action remains unclear. However, this natural compound has great pharmacological potential; it is now believed to be a complementary—or alternative—medicine for the prevention and treatment of different cancers.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 51542, India;
| | - Abdulaziz Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia; (S.A.A.); (M.A.A.); (A.A.); (K.S.A.)
- Correspondence:
| |
Collapse
|
4
|
Yee K, Papayannidis C, Vey N, Dickinson MJ, Kelly KR, Assouline S, Kasner M, Seiter K, Drummond MW, Yoon SS, Lee JH, Blotner S, Jukofsky L, Pierceall WE, Zhi J, Simon S, Higgins B, Nichols G, Monnet A, Muehlbauer S, Ott M, Chen LC, Martinelli G. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: Results from an idasanutlin phase 1/1b study⋆. Leuk Res 2020; 100:106489. [PMID: 33302031 DOI: 10.1016/j.leukres.2020.106489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The prognosis remains poor for patients with relapsed or refractory (r/r) acute myeloid leukemia; thus, novel therapies are needed. We evaluated idasanutlin-a new, potent murine double minute 2 antagonist-alone or with cytarabine in patients with r/r acute myeloid leukemia, de novo untreated acute myeloid leukemia unsuitable for standard treatment or with adverse features, or secondary acute myeloid leukemia in a multicenter, open-label, phase 1/1b trial. Primary objectives were to determine the maximum tolerated dose (MTD) and recommended dose for expansion (RDE) and characterize the safety profile of idasanutlin monotherapy and combination therapy. Clinical activity and pharmacokinetics were secondary objectives. Two idasanutlin formulations were investigated: a microprecipitate bulk powder (MBP) and optimized spray-dried powder (SDP). Following dose escalation, patients (N = 122) received idasanutlin at the RDE in the extension cohorts. No formal MTD was identified. Idasanutlin was tolerable alone and in combination with cytarabine. The RDE was determined as 600 mg twice a day for the MBP formulation and 300 mg twice a day for the SDP formulation. Adverse events were mostly grade 1/2 (76.2 %). The most common any-grade adverse events were gastrointestinal (including diarrhea [90.2 %]). The early death rate across all patients was 14.8 %. Plasma idasanutlin exposure was dose related. In TP53 wild-type patients, composite complete remission rates were 18.9 % with monotherapy and 35.6 % with combination therapy. Based on these results, idasanutlin development continued with further investigation in the treatment of acute myeloid leukemia. ClinicalTrials.gov: NCT01773408.
Collapse
Affiliation(s)
- Karen Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| | - Cristina Papayannidis
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Norbert Vey
- Department of Hematology, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Michael J Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin R Kelly
- Division of Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Sarit Assouline
- Division of Hematologic Oncology, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Margaret Kasner
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Karen Seiter
- Department of Medicine, Division of Oncology, New York Medical College, Valhalla, NY, United States
| | - Mark W Drummond
- Department of Haemato-Oncology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Sung-Soo Yoon
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, Seoul, Republic of Korea
| | - Steven Blotner
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Lori Jukofsky
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - William E Pierceall
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Jianguo Zhi
- Clinical Pharmacology, Roche Innovation Center, New York, NY, United States
| | - Silke Simon
- Clinical Pharmacology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Brian Higgins
- Product Development Oncology, Genentech, Inc, South San Francisco, CA, United States
| | - Gwen Nichols
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Annabelle Monnet
- Department of Biostatistics Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Marion Ott
- Clinical Development Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lin-Chi Chen
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
5
|
Montesinos P, Beckermann BM, Catalani O, Esteve J, Gamel K, Konopleva MY, Martinelli G, Monnet A, Papayannidis C, Park A, Récher C, Rodríguez-Veiga R, Röllig C, Vey N, Wei AH, Yoon SS, Fenaux P. MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol 2020; 16:807-815. [DOI: 10.2217/fon-2020-0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with refractory or relapsed acute myeloid leukemia (R/R AML) have a poor prognosis, with a high unmet medical need. Idasanutlin is a small-molecule inhibitor of MDM2, a negative regulator of tumor suppressor p53. By preventing the p53–MDM2 interaction, idasanutlin allows for p53 activation, particularly in patients with TP53 wild-type (WT) status. MIRROS (NCT02545283) is a randomized Phase III trial evaluating idasanutlin + cytarabine versus placebo + cytarabine in R/R AML. The primary end point is overall survival in the TP53-WT population. Secondary end points include complete remission rate (cycle 1), overall remission rate (cycle 1) and event-free survival in the TP53-WT population. MIRROS has an innovative design that integrates a stringent interim analysis for futility; continuation criteria were met in mid-2017 and accrual is ongoing. Trial registration number: NCT02545283
Collapse
Affiliation(s)
- Pau Montesinos
- Departamento de Hematologia, Hospital Universitari i Politècnic La Fe, València, Spain
- CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | | | - Jordi Esteve
- Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Katia Gamel
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine Institute of Hematology & Medical Oncology L & A Seràgnoli, Bologna, Italy
| | - Aaron Park
- Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | - Christian Récher
- Serviced’Hématologie, Institut Universitaire du Cancer Toulouse – Oncopole,Toulouse, France
| | | | - Christoph Röllig
- Department of Internal Medicine, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Norbert Vey
- Hematology Department, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital & Monash University, Melbourne, VIC, Australia
| | - Sung-Soo Yoon
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Pierre Fenaux
- Service d'Hématologie Séniors Hôpital Saint-Louis, Assistance Publique – Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
6
|
Nicolae CM, O'Connor MJ, Schleicher EM, Song C, Gowda R, Robertson G, Dovat S, Moldovan GL. PARI (PARPBP) suppresses replication stress-induced myeloid differentiation in leukemia cells. Oncogene 2019; 38:5530-5540. [PMID: 30967629 DOI: 10.1038/s41388-019-0810-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
Hyperproliferative cancer cells face increased replication stress, which can result in accumulation of DNA damage. As DNA damage can arrest proliferation, and, in the case of myeloid leukemia, induce differentiation of cancer cells, understanding the mechanisms that regulate the replication stress response is paramount. Here, we show that PARI, a replisome protein involved in regulating DNA repair and replication stress, suppresses differentiation of myeloid leukemia cells. We show that PARI is overexpressed in myeloid leukemia cells, and its knockdown reduces leukemia cell proliferation in vitro and in vivo in xenograft mouse models. PARI depletion enhances replication stress and DNA-damage accumulation, coupled with increased myeloid differentiation. Mechanistically, we show that PARI inhibits activation of the NF-κB pathway, which can initiate p21-mediated differentiation and proliferation arrest. Finally, we show that PARI expression negatively correlates with expression of differentiation markers in clinical myeloid leukemia samples, suggesting that targeting PARI may restore differentiation ability of leukemia cells and antagonize their proliferation.
Collapse
Affiliation(s)
- Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Michael J O'Connor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Chunhua Song
- Department of Pediatrics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Gavin Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
7
|
Nicolae CM, O'Connor MJ, Constantin D, Moldovan GL. NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene 2018; 37:3647-3656. [PMID: 29622796 DOI: 10.1038/s41388-018-0219-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/04/2017] [Accepted: 02/02/2018] [Indexed: 11/09/2022]
Abstract
DNA damage exposure is a major modifier of cell fate in both normal and cancer tissues. In response to DNA damage, myeloid leukemia cells activate a poorly understood terminal differentiation process. Here, we show that the NFκB pathway directly activates expression of the proliferation inhibitor p21 in response to DNA damage in myeloid leukemia cells. In order to understand the role of this unexpected regulatory event, we ablated the NFκB binding site we identified in the p21 promoter, using CRISPR/Cas9-mediated genome editing. We found that NFκB-mediated p21 activation controls DNA damage-induced myeloid differentiation. Our results uncover a p53-independent pathway for p21 activation involved in controlling hematopoietic cell fate.
Collapse
Affiliation(s)
- Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Michael J O'Connor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Daniel Constantin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
8
|
Tosato V, West N, Zrimec J, Nikitin DV, Del Sal G, Marano R, Breitenbach M, Bruschi CV. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Front Oncol 2017; 7:231. [PMID: 29034209 PMCID: PMC5626878 DOI: 10.3389/fonc.2017.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
In mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in spite of its usual and well-documented toxicity to wild-type yeast strains. These results obtained in yeast could provide new grounds for the interpretation of past observations made in leukemic patients indicating a possible involvement of P53 in cell transformation toward AML.
Collapse
Affiliation(s)
- Valentina Tosato
- Ulisse Biomed S.r.l., AREA Science Park, Trieste, Italy.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia.,Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy
| | - Nicole West
- Clinical Pathology, Hospital Maggiore, Trieste, Italy
| | - Jan Zrimec
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dmitri V Nikitin
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michael Breitenbach
- Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
Savva CG, Totokotsopoulos S, Nicolaou KC, Neophytou CM, Constantinou AI. Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells. BMC Cancer 2016; 16:279. [PMID: 27098354 PMCID: PMC4839067 DOI: 10.1186/s12885-016-2310-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells. METHODS Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53. RESULTS KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65. CONCLUSIONS Our findings demonstrate, for the first time, the selective anticancer properties of KC-53 towards leukemic cell lines and provide a detailed understanding of the molecular events underlying its dual anti-proliferative and pro-apoptotic properties. These results provide new insights into the development of innovative and targeted therapies for the treatment of some forms of leukemia.
Collapse
Affiliation(s)
- Christiana G Savva
- Department of Biological Sciences, University of Cyprus, Kallipoleos 75, Nicosia, 01678, Cyprus
| | - Sotirios Totokotsopoulos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6500 Main Street, Houston, TX, 77005, USA
| | - Kyriakos C Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6500 Main Street, Houston, TX, 77005, USA
| | - Christiana M Neophytou
- Department of Biological Sciences, University of Cyprus, Kallipoleos 75, Nicosia, 01678, Cyprus
| | - Andreas I Constantinou
- Department of Biological Sciences, University of Cyprus, Kallipoleos 75, Nicosia, 01678, Cyprus.
| |
Collapse
|
10
|
Bose P, Grant S. Rational Combinations of Targeted Agents in AML. J Clin Med 2015; 4:634-664. [PMID: 26113989 PMCID: PMC4470160 DOI: 10.3390/jcm4040634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Internal Medicine, Virginia Commonwealth University and VCU Massey Cancer Center Center, 1201 E Marshall St, MMEC 11-213, P.O. Box 980070, Richmond, VA 23298, USA; E-Mail:
| | - Steven Grant
- Departments of Internal Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, Human and Molecular Genetics and the Institute for Molecular Medicine, Virginia Commonwealth University and VCU Massey Cancer Center, 401 College St, P.O. Box 980035, Richmond, VA 23298, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-804-828-5211; Fax: +1-804-628-5920
| |
Collapse
|
11
|
Zeichner SB, Alghamdi S, Elhammady G, Poppiti RJ. Prognostic significance of TP53 mutations and single nucleotide polymorphisms in acute myeloid leukemia: a case series and literature review. Asian Pac J Cancer Prev 2014; 15:1603-9. [PMID: 24641375 DOI: 10.7314/apjcp.2014.15.4.1603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The response to treatment and overall survival (OS) of patients with acute myeloid leukemia (AML) is variable, with a median ranging from 6 months to 11.5 years. TP53 is associated with old age, chemotherapy resistance, and worse OS. Using genetic sequencing, we set out to look at our own experience with AML, and hypothesized that both TP53 mutations and SNPs at codon 72 would mimic the literature by occurring in a minority of patients, and conferring a worse OS. MATERIALS AND METHODS We performed a pilot study of randomly selected, newly diagnosed AML patients at Mount Sinai Medical Center, diagnosed from 2005-2008 (n=10). TP53 PCR sequencing was performed using DNA from bone marrow smears. Analysis was accomplished using Mutation Surveyor software with confirmation of the variants using the COSMIC and dbSNP databases. RESULTS Fewer than half of the patients harbored TP53 mutations (40%). There was no significant difference in OS based on gender, AML history, risk-stratified karyotype, or TP53 mutation. There were possible trends toward improved survival among patients less than 60 (11 vs 4 months, p=0.09), Hispanics (8 vs 1 months, p=0.11), and those not harboring SNP P72R (8 vs 2 months, p=0.10). There was a significant improvement in survival among patients with better performance status (28 vs 4 months, p=0.01) and those who did not have a complex karyotype (8 vs 1 months, p=0.03). The most commonly observed TP53 mutation was a missense N310K (40%) and the most commonly observed SNP was P72R (100.0%). CONCLUSIONS Our study confirms previous reports that poor PS and the presence of a complex karyotype are associated with a decreased OS. In our cohort, TP53 mutations were relatively common, occurring more frequently in male patients with an adverse karyotype. Although there was no significant difference in survival between TP53 mutated and un-mutated patients, there was a possible trend toward worse OS among patients with SNP P72R. Larger studies are needed to validate these findings.
Collapse
Affiliation(s)
- Simon Blechman Zeichner
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA E-mail :
| | | | | | | |
Collapse
|
12
|
Maso V, Calgarotto AK, Franchi GC, Nowill AE, Filho PL, Vassallo J, Saad STO. Multitarget effects of quercetin in leukemia. Cancer Prev Res (Phila) 2014; 7:1240-50. [PMID: 25293876 DOI: 10.1158/1940-6207.capr-13-0383] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study proposes to investigate quercetin antitumor efficacy in vitro and in vivo, using the P39 cell line as a model. The experimental design comprised leukemic cells or xenografts of P39 cells, treated in vitro or in vivo, respectively, with quercetin; apoptosis, cell-cycle and autophagy activation were then evaluated. Quercetin caused pronounced apoptosis in P39 leukemia cells, followed by Bcl-2, Bcl-xL, Mcl-1 downregulation, Bax upregulation, and mitochondrial translocation, triggering cytochrome c release and caspases activation. Quercetin also induced the expression of FasL protein. Furthermore, our results demonstrated an antioxidant activity of quercetin. Quercetin treatment resulted in an increased cell arrest in G1 phase of the cell cycle, with pronounced decrease in CDK2, CDK6, cyclin D, cyclin E, and cyclin A proteins, decreased Rb phosphorylation and increased p21 and p27 expression. Quercetin induced autophagosome formation in the P39 cell line. Autophagy inhibition induced by quercetin with chloroquine triggered apoptosis but did not alter quercetin modulation in the G1 phase. P39 cell treatment with a combination of quercetin and selective inhibitors of ERK1/2 and/or JNK (PD184352 or SP600125, respectively), significantly decreased cells in G1 phase, this treatment, however, did not change the apoptotic cell number. Furthermore, in vivo administration of quercetin significantly reduced tumor volume in P39 xenografts and confirmed in vitro results regarding apoptosis, autophagy, and cell-cycle arrest. The antitumor activity of quercetin both in vitro and in vivo revealed in this study, point to quercetin as an attractive antitumor agent for hematologic malignancies.
Collapse
Affiliation(s)
- Victor Maso
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Andrana Karla Calgarotto
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Gilberto Carlos Franchi
- Onco-Hematological Child Research Center, Faculty of Medical Sciences, University of Campinas-Unicamp, Campinas, São Paulo, Brazil
| | - Alexandre Eduardo Nowill
- Onco-Hematological Child Research Center, Faculty of Medical Sciences, University of Campinas-Unicamp, Campinas, São Paulo, Brazil
| | - Paulo Latuf Filho
- Department of Pathology, Faculty of Medical Sciences, Laboratory of Investigative and Molecular Pathology, CIPED, FCM-Unicamp, Campinas, Brazil
| | - José Vassallo
- Department of Pathology, Faculty of Medical Sciences, Laboratory of Investigative and Molecular Pathology, CIPED, FCM-Unicamp, Campinas, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Abdel Hamid TM, El Gammal MM, Eibead GT, Saber MM, Abol Elazm OM. Clinical impact of SNP of P53 genes pathway on the adult AML patients. ACTA ACUST UNITED AC 2014; 20:328-35. [PMID: 25232917 DOI: 10.1179/1607845414y.0000000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a highly heterogeneous disease, with biologically and prognostically different subtypes. AIM To study the impact of p53, p21, and mdm2 gene polymorphisms on the clinical outcome in adult AML patients treated at the National Cancer Institute (NCI) - Cairo University. METHODS Forty-eight adult AML patients presented to the Medical Oncology Department, NCI, from April 2010 till November 2011. Clinical data and bone marrow samples were obtained. Molecular genetic analysis involving P53, MDM2, and P21 single-nucleotide gene polymorphisms was done using polymerase chain reaction-restriction fragment length polymorphism coupled analysis. RESULTS The mean age was 35.7 years. After a median follow-up period of 12 months, 28 patients (58.4%) achieved complete remission (CR) and the overall survival (OS) was 8.7 months. Patients with homozygous Arg/arg at codon 72 of P53 had a better median OS months than Arg/Pro and Pro/Pro (13.4 vs. 8.4 vs. 1.5 months, respectively; P = 0.045). P53/p21 combination had a better median OS and disease-free survival (DFS) of 12.1 and 13.7 months for wild type cases (GG + Ser/ser) and 20.3 and 20.7 months for patients with either variant genes (GC + Ser/arg) compared with 1.1 and 1.9 months for patients with both variant genes (CC + arg/arg), (P = 0.037 and 0.004). The presence of wild genotype of either P21 or MDM2 may abolish the effect of P53 homozygous variant genotype on the OS. Neither p21nor mdm2 polymorphism alone showed an impact on OS or DFS. CR was not affected by any of the three gene polymorphisms. CONCLUSION The p53 pathway gene polymorphisms may affect the OS of adult AML patients.
Collapse
|
14
|
The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia 2009; 23:656-63. [DOI: 10.1038/leu.2008.375] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Benites B, Fattori A, Hackel C, Lorand-Metze I, De Souza C, Schulz E, Costa F, Saad S. Low expression of APAF-1XL in acute myeloid leukemia may be associated with the failure of remission induction therapy. Braz J Med Biol Res 2008; 41:571-8. [DOI: 10.1590/s0100-879x2008000700004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/09/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - A. Fattori
- Universidade Estadual de Campinas, Brasil
| | - C. Hackel
- Universidade Estadual de Campinas, Brasil
| | | | | | - E. Schulz
- Universidade Estadual de Campinas, Brasil
| | - F.F. Costa
- Universidade Estadual de Campinas, Brasil
| | | |
Collapse
|
16
|
Zolota V, Sirinian C, Melachrinou M, Symeonidis A, Bonikos DS. Expression of the regulatory cell cycle proteins p21, p27, p14, p16, p53, mdm2, and cyclin E in bone marrow biopsies with acute myeloid leukemia. Correlation with patients' survival. Pathol Res Pract 2007; 203:199-207. [PMID: 17395400 DOI: 10.1016/j.prp.2007.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/23/2007] [Indexed: 02/02/2023]
Abstract
Cell cycle control is a crucial event in normal hematopoiesis, and abnormalities of regulatory cell cycle genes have been found to contribute to the development of many hematologic malignancies. The present study investigates the immunohistochemical expression of seven essential cell cycle proteins (p21, p27, p14, p16, p53, mdm2, and cyclin E) in paraffin-embedded sections from 42 bone marrow biopsies obtained from an equal number of patients with newly diagnosed acute myeloid leukemia (AML). This study revealed (i) a high frequency of p53+/mdm2-/p21-phenotype, which is probably a result of p53 gene mutation and/or inhibition of mdm2 action by p14(ARF); (ii) expression of p27+/cyclinE-phenotype in most cases, suggesting that p27 may act as a potent cyclin-dependent kinase inhibitor; (iii) expression of p16 only in very few cases; and (iv) no relationship between the expression of any of the above proteins and survival as well as histologic subtype.
Collapse
Affiliation(s)
- Vassiliki Zolota
- Department of Pathology, University of Patras Medical School, Patras, Greece.
| | | | | | | | | |
Collapse
|
17
|
Bruserud Ø, Stapnes C, Tronstad KJ, Ryningen A, Anensen N, Gjertsen BT. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert Opin Ther Targets 2006; 10:51-68. [PMID: 16441228 DOI: 10.1517/14728222.10.1.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several new therapeutic strategies are now considered for acute myelogenous leukaemia (AML), including modulation of protein lysine acetylation through inhibition of histone deacetylases (HDACs): a large group of enzymes that alters the acetylation and, thereby, the function of a wide range of nuclear and cytoplasmic proteins. Firstly, HDACs can deacetylate histones as well as transcription factors, and can modulate gene expression through both these mechanisms. Secondly, acetylation is an important post-translational modulation of several proteins involved in the regulation of cell proliferation, differentiation and apoptosis (e.g., p53, tubulin, heat-shock protein 90). The only HDAC inhibitors that have been investigated in clinical studies of AML are butyrate derivatives, valproic acid and depsipeptide. In the first studies, the drugs have usually been used as continuous therapy for several weeks or months, and in most studies the drugs were used alone or in combination with all-trans retinoic acid for treatment of patients with relapsed or primary resistant AML. Neurological toxicity and gastrointestinal side effects seem to be common for all three drugs. Complete haematological remission lasting for several months has been reported for a few patients (< 5% of included patients), whereas increased peripheral blood platelet counts seem more common and have been described both for patients with AML and myelodysplastic syndromes. Taken together, these studies suggest that HDAC inhibition can mediate antileukaemic effects in AML, but for most patients the clinical benefit seems limited and further studies of combination therapy are required.
Collapse
Affiliation(s)
- Øystein Bruserud
- Division for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Yin B, Kogan SC, Dickins RA, Lowe SW, Largaespada DA. Trp53 loss during in vitro selection contributes to acquired Ara-C resistance in acute myeloid leukemia. Exp Hematol 2006; 34:631-41. [PMID: 16647569 DOI: 10.1016/j.exphem.2006.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Chemoresistance remains a major clinical obstacle to curative chemotherapy of acute myeloid leukemia (AML), but the molecular mechanisms underlying resistance to chemotherapeutic agents used in AML are largely unknown. We have attempted to investigate genetic mechanisms causing resistance to Ara-C [1-beta-D-arabinofuranosyl-cytosine (cytarabine)], one mainstay in AML chemotherapy for decades. MATERIAL AND METHODS Highly Ara-C-resistant murine BXH-2 strain AML cell lines were generated, and their molecular changes were compared to their sensitive parental lines. The causative changes were confirmed using a genetic approach. RESULTS We derived nine highly Ara-C-resistant murine BXH-2 strain AML sublines via in vitro selection. p21Cip1 was dramatically downregulated and p53 protein accumulation induced by Ara-C treatment was impaired in one resistant line. In this line, repeated Ara-C exposure had selected for cells that harbor a genomic deletion affecting the splicing of Trp53 mRNA. This deletion produces an aberrant Trp53 mRNA, in which exon 4 is skipped, producing a protein lacking parts of both the transactivation and DNA-binding domains. Retroviral transduction of the sensitive parental cells with a dominant-negative Trp53 cDNA caused changes in the protein levels of p21Cip1, BAX, and cleaved caspase-3, but not bcl-XL, and rendered the cells more resistant to Ara-C. Unexpectedly, we found that pifithrin-alpha (PFTalpha), a compound that has been proposed to regulate p53 protein activity, induced apoptosis in both Ara-C-sensitive and -resistant lines, and decreased Ara-C resistance in cells with either normal or mutant Trp53 genes. CONCLUSIONS These data indicate that Trp53 loss-of-function could partly explain the acquisition of AML chemoresistance, and suggest that PFTalpha could be useful in treatment of relapsed AML.
Collapse
Affiliation(s)
- Bin Yin
- University of Minnesota Cancer Center, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
19
|
Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou F. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 2006; 354:220-8. [PMID: 16762306 DOI: 10.1016/j.ab.2006.04.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/29/2006] [Accepted: 04/07/2006] [Indexed: 11/30/2022]
Abstract
Oligonucleotide (ODN)-capped gold nanoparticles (Au-NPs) were used in a sandwich assay of ODN or polynucleotide by a flow injection surface plasmon resonance (SPR). A carboxylated dextran film was immobilized onto the SPR sensor surface to eliminate nonspecific adsorption of ODN-capped Au-NPs. The tandem use of signal amplification via the adlayer of the ODN-capped Au-NPs and the differential signal detection by the bicell detector on the SPR resulted in a remarkable DNA detection level. A 39-mer target at a quantity as low as 2.1 x 10(-20)mol, corresponding to 1.38 fM in a 15 microl solution, can be measured. To our knowledge, both the concentration and quantity detection levels are the lowest among all the gene analyses conducted with SPR to this point. The method is shown to be reproducible (relative standard deviation values <16%) and to possess high sequence specificity. It is also demonstrated to be viable for sequence-specific p53 cDNA analysis. The successful elimination of nonspecific adsorption of, and the signal amplification by, ODN-capped Au-NPs renders the SPR attractive for cases where the DNA concentration is extremely low and the sample availability is severely limited.
Collapse
Affiliation(s)
- Xin Yao
- College of Chemistry and Chemical Engineering, Graduate School, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Xia L, Chen D, Han R, Fang Q, Waxman S, Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther 2005; 4:381-8. [PMID: 15767547 DOI: 10.1158/1535-7163.mct-03-0266] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism of the cytotoxic effect of boswellic acid acetate, a 1:1 mixture of alpha-boswellic acid acetate and beta-boswellic acid acetate, isolated from Boswellia carterri Birdw on myeloid leukemia cells was investigated in six human myeloid leukemia cell lines (NB4, SKNO-1, K562, U937, ML-1, and HL-60 cells). Morphologic and DNA fragmentation assays indicated that the cytotoxic effect of boswellic acid acetate was mediated by induction of apoptosis. More than 50% of the cells underwent apoptosis after treatment with 20 mug/mL boswellic acid for 24 hours. This apoptotic process was p53 independent. The levels of apoptosis-related proteins Bcl-2, Bax, and Bcl-XL were not modulated by boswellic acid acetate. Boswellic acid acetate induced Bid cleavage and decreased mitochondrial membrane potential without production of hydrogen peroxide. A general caspase inhibitor (Z-VAD-FMK) and a specific caspase-8 inhibitor II (Z-IETD-FMK) blocked boswellic acid acetate-induced apoptosis. The mRNAs of death receptors 4 and 5 (DR4 and DR5) were induced in leukemia cells undergoing apoptosis after boswellic acid acetate treatment. These data taken together suggest that boswellic acid acetate induces myeloid leukemia cell apoptosis through activation of caspase-8 by induced expression of DR4 and DR5, and that the activated caspase-8 either directly activates caspase-3 by cleavage or indirectly by cleaving Bid, which in turn decreases mitochondria membrane potential.
Collapse
MESH Headings
- Amino Acid Chloromethyl Ketones/pharmacology
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Caspase 3
- Caspases/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Fragmentation
- HL-60 Cells
- Humans
- Hydrogen Peroxide/pharmacology
- Inhibitory Concentration 50
- K562 Cells
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/pathology
- Membrane Potentials
- Mitochondria/metabolism
- Models, Biological
- Models, Chemical
- Oligopeptides/pharmacology
- Protein Binding
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/metabolism
- Triterpenes/pharmacology
- U937 Cells
- bcl-2-Associated X Protein
- bcl-X Protein
Collapse
Affiliation(s)
- Lijuan Xia
- Division of Hematology/Oncology, Department of Medicine, Box 1178, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6547.
| | | | | | | | | | | |
Collapse
|
21
|
Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 2004; 18:1169-75. [PMID: 15103387 DOI: 10.1038/sj.leu.2403367] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is distinguished from other acute myeloid leukemias (AMLs) by cytogenetic, clinical, as well as biological characteristics. The hallmark of APL is the t(15;17), which leads to the expression of the PML/RARalpha fusion protein. PML/RARalpha is the central leukemia-inducing lesion in APL and is directly targeted by all trans retinoic acid (t-RA) as well as by arsenic, both compounds able to induce complete remissions. This review focuses on potential stem cell involvement in APL outlining the knowledge about the APL-initiating stem cell and the influence of PML/RARalpha on the biology of the hematopoietic stem cell. Moreover, the importance of the blockage of t-RA signaling by the PML/RARalpha for the pathogenesis of APL is discussed, taking the relevance of the t-RA signaling pathway for the global hematopoiesis into account.
Collapse
Affiliation(s)
- E Puccetti
- Med. Klinik III/Abtl. Hämatologie, Labor für Experimentelle Hämatologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | |
Collapse
|