1
|
Barati M, Mirzavi F, Nikpoor AR, Sankian M, Namdar Ahmadabad H, Soleimani A, Mashreghi M, Tavakol Afshar J, Mohammadi M, Jaafari MR. Enhanced antitumor immune response in melanoma tumor model by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Cancer Gene Ther 2022; 29:814-824. [PMID: 34341501 DOI: 10.1038/s41417-021-00367-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Programmed cell death protein-1 (PD-1), as an immune checkpoint molecule, attenuates T-cell activity and induces T-cell exhaustion. Although siRNA has a great potential in cancer immunotherapy, its delivery to target cells is the main limitation of using siRNA. This study aimed to prepare a liposomal formulation as a siRNA carrier to silence PD-1 expression in T cells and investigate it's in vivo antitumor efficacy. The liposomal siRNA was prepared and characterized by size, zeta potential, and biodistribution. Following that, the uptake assay and mRNA silencing were evaluated in vitro at mRNA and protein levels. siRNA-PD-1 (siPD-1)-loaded liposome nanoparticles were injected into B16F0 tumor-bearing mice to evaluate tumor growth, tumor-infiltrating lymphocytes, and survival rate. Liposomal siPD-1 efficiently silenced PD-1 mRNA expression in T cells (P < 0.0001), and siPD-1-loaded liposomal nanoparticles enhanced the infiltration of T-helper 1 (Th 1) and cytotoxic T lymphocytes into the tumor tissue (P < 0.0001). Liposome-PD-1 siRNA monotherapy and PD-1 siRNA-Doxil (liposomal doxorubicin) combination therapy improved the survival significantly, compared to the control treatment (P < 0.001). Overall, these findings suggest that immunotherapy with siPD-1-loaded liposomes by enhancing T-cell-mediated antitumor immune responses could be considered as a promising strategy for the treatment of melanoma cancer.
Collapse
Affiliation(s)
- Mehdi Barati
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Department, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Namdar Ahmadabad
- Department of Pathobiology and medical laboratory science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshar
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Qasim W. Allogeneic CAR T cell therapies for leukemia. Am J Hematol 2019; 94:S50-S54. [PMID: 30632623 DOI: 10.1002/ajh.25399] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
Abstract
Allogeneic chimeric antigen receptor T (CAR T) cells can offer advantages over autologous T cell therapies, including the availability of "fit" cells for production, and elimination of risks associated with inadvertent transduction of leukemic blasts. However, allogeneic T cell therapies must address HLA barriers and conventionally rely on the availability of a suitable HLA-matched donor if graft-vs-host-disease and rejection effects are to be avoided. More recently, the incorporation of additional genome editing manipulations, to disrupt T cell receptor expression and address other critical pathways have been explored. Clinical trials are underway investigating non-HLA matched T cells expressing anti-CD19 CARs for the treatment of B cell acute lymphoblastic leukemia (B-ALL) and anti-CD123 CAR for acute myeloid leukemia (AML). Such approaches continue to be refined and improved to widen accessibility and reduce the cost of T cell therapies for a wider range of conditions.
Collapse
Affiliation(s)
- Waseem Qasim
- University College London, Great Ormond Street Institute of Child Health London United Kingdom
| |
Collapse
|
3
|
Ligtenberg MA, Pico de Coaña Y, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, Betancur-Boissel M, Eliseev AV, Wolfson AD, Kiessling R. Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma. Mol Ther 2018; 26:1482-1493. [PMID: 29735366 PMCID: PMC5986970 DOI: 10.1016/j.ymthe.2018.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy (ACT) is becoming a prominent alternative therapeutic treatment for cancer patients relapsing on traditional therapies. In parallel, antibodies targeting immune checkpoint molecules, such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) and cell death protein 1 pathway (PD-1), are rapidly being approved for multiple cancer types, including as first line therapy for PD-L1-expressing non-small-cell lung cancer. The combination of ACT and checkpoint blockade could substantially boost the efficacy of ACT. In this study, we generated a novel self-delivering small interfering RNA (siRNA) (sdRNA) that knocked down PD-1 expression on healthy donor T cells as well as patient-derived tumor-infiltrating lymphocytes (TIL). We have developed an alternative chemical modification of RNA backbone for improved stability and increased efficacy. Our results show that T cells treated with sdRNA specific for PD-1 had increased interferon γ (IFN-γ) secreting capacity and that this modality of gene expression interference could be utilized in our rapid expansion protocol for production of TIL for therapy. TIL expanded in the presence of PD-1-specific sdRNA performed with increased functionality against autologous tumor as compared to control TIL. This method of introducing RNAi into T cells to modify the expression of proteins could easily be adopted into any ACT protocol and will lead to the exploration of new combination therapies.
Collapse
Affiliation(s)
- Maarten A Ligtenberg
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden.
| | | | - Yuya Yoshimoto
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Iva Truxova
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden; Charles University, 2(nd) Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic; Sotio A.S., 170 00 Prague, Czech Republic
| | - Yuan Yang
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden; Clinical Research Center, Guizhou Medical University Hospital, Guiyang 550025, People's Republic of China
| | | | | | | | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm 17176, Sweden
| |
Collapse
|
4
|
Abstract
Immunotherapeutic approaches have been gaining attention in the field of cancer treatment because of their possible ability to eradicate cancer cells as well as metastases by recruiting the host immune system. On the other hand, RNA-based therapeutics with the ability to silence expression of specific targets are currently under clinical investigation for various disorders including cancer. As the mechanisms of tumor evasion from the host immune system are versatile, different molecules have the capacity to be targeted by RNAi technology in order to enhance the immune response against tumors. This technology has been used to silence specific targets in tumor cells, as well as immune cells in cancer cell lines, animal models and clinical trials. siRNAs can also stimulate innate immune responses through activation of Toll-like receptors. Although currently clinical trials of the application of siRNA in cancer immunotherapy are few, it is predicted that in future this technology will be used broadly in cancer treatment.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|