1
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
2
|
Liu L, Xu H, Wang J, Wang H, Ren S, Huang Q, Zhang M, Zhou H, Yang C, Jia L, Huang Y, Zhang H, Tao Y, Li Y, Min Y. Trimethylamine-N-oxide (TMAO) and basic fibroblast growth factor (bFGF) are possibly involved in corticosteroid resistance in adult patients with immune thrombocytopenia. Thromb Res 2024; 233:25-36. [PMID: 37988847 DOI: 10.1016/j.thromres.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE Immune thrombocytopenia (ITP) is an autoimmune disease characterized by accelerated platelet clearance. Gut dysbiosis was associated with its pathogenesis, but the underlying mechanisms have not been fully elucidated. Patients with ITP exhibit varying degrees of responsiveness to corticosteroid treatment. Therefore, prognostic indexes for corticosteroid responsiveness in ITP could offer valuable guidance for clinical practices. METHODS The present study examined the signature of six types of gut-microbiota metabolites and forty-eight types of cytokines, chemokines, and growth factors and their clinical significance in patients with ITP. RESULTS Both patients with good and poor corticosteroid responsiveness exhibited significantly elevated/suppressed secretion of twenty-two cyto(chemo)kins/growth factors in comparison to healthy controls. Additionally, patients with ITP demonstrated a significant decrease in plasma levels of trimethylamine-N-oxide (TMAO), which was found to be negatively correlated to circulating platelet counts, and positively correlated with Interleukin (IL)-1β and IL-18. Notably, patients who exhibited poor response to corticosteroid treatment displayed elevated levels of TMAO and basic fibroblast growth factor (bFGF) in comparison to responders. Additionally, we found that the amalgamation of TMAO, bFGF and interleukin (IL)-13 could serve as a valuable prognostic tool for predicting CS responsiveness. CONCLUSION Patients with ITP were characterized overall by an imbalanced secretion of cyto(cheo)kins/growth factors and inadequate levels of TMAO. The varying degrees of responsiveness to corticosteroid treatment can be attributed to different profiles of basic FGF and TMAO that might be related to overburdened oxidative stress and inflammasome overactivation, and ultimately mediate corticosteroid resistance.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huifang Xu
- Department of Clinical Medicine, Jining Medical University, Jining, China; Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Haiyan Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qian Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Mingyan Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chunyan Yang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lu Jia
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ying Li
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yanan Min
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China; Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Hasan MM, Tory S. Association between glucocorticoid receptor beta and steroid resistance: A systematic review. Immun Inflamm Dis 2024; 12:e1137. [PMID: 38270313 PMCID: PMC10785191 DOI: 10.1002/iid3.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Glucocorticoids are the most commonly used anti-inflammatory drugs for a variety of diseases, despite the fact that resistance to them is growing in a number of conditions. There is currently no biomarker that can be used to identify steroid resistance. According to a number of studies, an overexpression of the glucocorticoid receptor beta (GR-β) isoform is associated with steroid-resistant illness. Our goal is to find out whether or not steroid-resistant disorders are associated with an increased level of GR-β expression. METHODS We conducted searches in the databases of Web of Science and PubMed until January 17, 2023. This systematic review was done according to the preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Joanna Briggs Institute Appraisal scale was used to assess the quality of the included studies. RESULTS After the initial search, we identified 556 papers and finally included 20 studies. Twelve of these studies found an elevated level of GR-β in the steroid resistant group. All five studies on asthma, two out of three on nasal polyps, both studies on ulcerative colitis found an up regulation of GR-β in steroid resistant group as compared to steroid-sensitive groups. GR-β was also shown to be elevated in patients with allergic rhinitis, Crohn's disease and rheumatoid arthritis. In the majority of the investigations, higher levels of GR-β were identified in peripheral blood mononuclear cells through the use of reverse transcription polymerase chain reaction. CONCLUSION GR-β was associated with steroid-resistant diseases. It was overexpressed in steroid-resistant diseases and has the potential to be used as a biomarker for disorders involving steroid resistance.
Collapse
Affiliation(s)
| | - Sehreen Tory
- M Abdur Rahim Medical CollegeUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
4
|
Huang H, Wang W, Cui Y, Hu CX, Du M. Correlation between nuclear expression of heat shock protein 90 in dermis and glucocorticoid resistance in bullous dermatosis. Steroids 2023; 194:109223. [PMID: 36948346 DOI: 10.1016/j.steroids.2023.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND bullous dermatosis is a group of skin diseases that occur on the skin and mucous membrane, with blister and bulla as basic damage, mainly including pemphigus and bullous pemphigoid. Glucocorticoid (GC) is still the preferred drug for its treatment, but some patients respond poorly to GC and even develop glucocorticoid resistance (GCR). However, at present about the disease the understanding of the mechanisms for GCR is limited. OBJECTIVE This study attempted to investigate the molecular mechanism of GCR in bullous dermatosis with heat shock proteins 90 (HSP90) and glucocorticoid receptor (GR) as molecular targets. METHODS In this study, flow cytometry was used to measure and analyze the expression of HSP90 and GR in the lesions of patients with glucocorticoid-resistant bullosa dermatosis. Immunohistochemistry and immunofluorescence were used to observe the expression distribution and cell localization of HSP90 and GR. RESULTS The expression of HSP90 in skin lesions of GCR group was significantly higher than that of glucocorticoid-sensitive (GCS) group, while the expression level of GR was lower than that of GCS group. In the epidermis, the expression and distribution of HSP90 were not different between the GCR group and the GCS group. And in the dermis, HSP90 and GR were more likely to be expressed in the nucleus in the GCR group. CONCLUSION The overexpression and nuclear distribution of HSP90 may be related to the occurrence of GCR in patients with bullous dermatosis. And this correlation is more likely to occur in the dermis than in the epidermis.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yu Cui
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cai-Xia Hu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Du
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Christakoudi S, Runglall M, Mobillo P, Rebollo-Mesa I, Tsui TL, Nova-Lamperti E, Norris S, Kamra Y, Hilton R, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks SD, Macphee I, McKane W, Mohaupt MG, Pararajasingam R, Kon SP, Serón D, Sinha M, Tucker B, Viklický O, Lechler RI, Lord GM, Stahl D, Hernandez-Fuentes MP. Steroid regulation: An overlooked aspect of tolerance and chronic rejection in kidney transplantation. Mol Cell Endocrinol 2018; 473:205-216. [PMID: 29427591 DOI: 10.1016/j.mce.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Steroid conversion (HSD11B1, HSD11B2, H6PD) and receptor genes (NR3C1, NR3C2) were examined in kidney-transplant recipients with "operational tolerance" and chronic rejection (CR), independently and within the context of 88 tolerance-associated genes. Associations with cellular types were explored. Peripheral whole-blood gene-expression levels (RT-qPCR-based) and cell counts were adjusted for immunosuppressant drug intake. Tolerant (n = 17), stable (n = 190) and CR patients (n = 37) were compared. Healthy controls (n = 14) were used as reference. The anti-inflammatory glucocorticoid receptor (NR3C1) and the cortisol-activating HSD11B1 and H6PD genes were up-regulated in CR and were lowest in tolerant patients. The pro-inflammatory mineralocorticoid gene (NR3C2) was downregulated in stable and CR patients. NR3C1 was associated with neutrophils and NR3C2 with T-cells. Steroid conversion and receptor genes, alone, enabled classification of tolerant patients and were major contributors to gene-expression signatures of both, tolerance and CR, alongside known tolerance-associated genes, revealing a key role of steroid regulation and response in kidney transplantation.
Collapse
Affiliation(s)
- Sofia Christakoudi
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Manohursingh Runglall
- NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Paula Mobillo
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Irene Rebollo-Mesa
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Tjir-Li Tsui
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | | | - Sonia Norris
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Yogesh Kamra
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Rachel Hilton
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sunil Bhandari
- Hull and East Yorkshire Hospitals NHS Trust, Anlaby Rd, Hull HU3 2JZ, UK
| | - Richard Baker
- St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Sue Carr
- Leicester General Hospital, Gwendolen Rd, Leicester LE5 4PW, UK
| | - David Game
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sian Griffin
- Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Ln, Salford M6 8HD, UK
| | - Robert Lewis
- Queen Alexandra Hospital, Southwick Hill Rd, Cosham, Portsmouth PO6 3LY, UK
| | - Patrick B Mark
- University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Stephen D Marks
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St, London WC1N 3JH, UK
| | - Iain Macphee
- St George's Hospital, Blackshaw Rd, London SW17 0QT, UK
| | - William McKane
- Northern General Hospital, Herries Rd, Sheffield S5 7AU, UK
| | - Markus G Mohaupt
- INSELSPITAL, Universitätsspital Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital, Freiburgstrasse 8, 3010 Bern, Switzerland
| | | | - Sui Phin Kon
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Daniel Serón
- Hospital Universitario Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Manish Sinha
- Evelina London Children's Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK
| | - Beatriz Tucker
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Ondrej Viklický
- Transplantační laboratoř, Institut klinické a experimentální medicíny (IKEM), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Stahl
- Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|