1
|
Jia Y, Li X, Chen L, Li L, Zhang S, Huang W, Zhang H. AHR signaling pathway mediates mitochondrial oxidative phosphorylation which leads to cytarabine resistance. Acta Biochim Biophys Sin (Shanghai) 2024; 56:597-606. [PMID: 38404179 DOI: 10.3724/abbs.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) has been identified as a significant driver of tumorigenesis. However, its clinical significance in acute myeloid leukemia (AML) remains largely unclear. In this study, RNA-Seq data from AML patients (bone marrow samples from 173 newly diagnosed AML patients) obtained from the TCGA database, and normal human RNA-Seq data (bone marrow samples from 70 healthy individuals) obtained from the GTEX database are downloaded for external validation and complementarity. The data analysis reveals that the AHR signaling pathway is activated in AML patients. Furthermore, there is a correlation between the expressions of AHR and mitochondrial oxidative phosphorylation genes. In vitro experiments show that enhancing AHR expression in AML cells increases mitochondrial oxidative phosphorylation and induces resistance to cytarabine. Conversely, reducing AHR expression in AML cells decreases cytarabine resistance. These findings deepen our understanding of the AHR signaling pathway's involvement in AML.
Collapse
Affiliation(s)
- Yan Jia
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
- Shangdong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiyu Li
- Department of Clinical Medicine, Jining Medical University, Jining 272000, China
| | - Lulu Chen
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Ling Li
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Suzhen Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Wenhui Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| |
Collapse
|
2
|
Dogan H, Ozcimen AA, Silici S. Interaction of olive oil-based propolis and caffeic acid phenethyl ester with methylprednisolone used in the treatment of human acute myeloid leukemia. Mol Biol Rep 2024; 51:559. [PMID: 38643306 DOI: 10.1007/s11033-024-09493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.
Collapse
Affiliation(s)
- Hamide Dogan
- Department of Biology, Faculty of Sciences, Mersin University, Mersin, 33343, Turkey.
| | - A Ata Ozcimen
- Department of Biology, Faculty of Sciences, Mersin University, Mersin, 33343, Turkey
| | - Sibel Silici
- Department of Agricultural Biotechnology, Seyrani Agriculture Faculty, Erciyes University, Nutral Therapy Co., Erciyes Technopark, Kayseri, 38039, Turkey
| |
Collapse
|
3
|
Prades-Sagarra E, Laarakker F, Dissy J, Lieuwes NG, Biemans R, Dubail M, Fouillade C, Yaromina A, Dubois LJ. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiother Oncol 2024; 190:110021. [PMID: 38000688 DOI: 10.1016/j.radonc.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND PURPOSE Lung cancers are highly resistant to radiotherapy, necessitating the use of high doses, which leads to radiation toxicities such as radiation pneumonitis and fibrosis. Caffeic Acid Phenethyl Ester (CAPE) has been suggested to have anti-proliferative and pro-apoptotic effects in tumour cells, while radioprotective anti-inflammatory and anti-oxidant effects in the normal tissue. We investigated the radiosensitizing and radioprotective effects of CAPE in lung cancer cell lines and normal tissue in vitro and ex vivo, respectively. MATERIALS AND METHODS The cytotoxic and radiosensitizing effects of CAPE in lung cancer were investigated using viability and clonogenic survival assays. The radioprotective effects of CAPE were assessed in vitro and ex vivo using precision cut lung slices (PCLS). Potential underlying molecular mechanisms of CAPE focusing on cell cycle, cell metabolism, mitochondrial function and pro-inflammatory markers were investigated. RESULTS Treatment with CAPE decreased cell viability in a dose-dependent manner (IC50 57.6 ± 16.6 μM). Clonogenic survival assays showed significant radiosensitization by CAPE in lung adenocarcinoma lines (p < 0.05), while no differences were found in non-adenocarcinoma lines (p ≥ 0.13). Cell cycle analysis showed an increased S-phase (p < 0.05) after incubation with CAPE in the majority of cell lines. Metabolic profiling showed that CAPE shifted cellular respiration towards glycolysis (p < 0.01), together with mitochondrial membrane depolarization (p < 0.01). CAPE induced a decrease in NF-κB activity in adenocarcinomas and decreased pro-inflammatory gene expression in PCLS. CONCLUSION The combination of CAPE and radiotherapy may be a potentially effective approach to increase the therapeutic window in lung cancer patients.
Collapse
Affiliation(s)
- E Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - F Laarakker
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J Dissy
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - N G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - R Biemans
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - M Dubail
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - C Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - A Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
4
|
Dou X, Guo H, D'Amico T, Abdallah L, Subramanian C, Patel BA, Cohen M, Rubinstein JL, Blagg BSJ. CryoEM Structure with ATP Synthase Enables Late-Stage Diversification of Cruentaren A. Chemistry 2023; 29:e202300262. [PMID: 36867738 PMCID: PMC10205660 DOI: 10.1002/chem.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/05/2023]
Abstract
Cruentaren A is a natural product that exhibits potent antiproliferative activity against various cancer cell lines, yet its binding site within ATP synthase remained unknown, thus limiting the development of improved analogues as anticancer agents. Herein, we report the cryogenic electron microscopy (cryoEM) structure of cruentaren A bound to ATP synthase, which allowed the design of new inhibitors through semisynthetic modification. Examples of cruentaren A derivatives include a trans-alkene isomer, which was found to exhibit similar activity to cruentaren A against three cancer cell lines as well as several other analogues that retained potent inhibitory activity. Together, these studies provide a foundation for the generation of cruentaren A derivatives as potential therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaozheng Dou
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Hui Guo
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Terin D'Amico
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Leah Abdallah
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chitra Subramanian
- Departments of Surgery and Bioengineering, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Bhargav A Patel
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mark Cohen
- Departments of Surgery and Bioengineering, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Departments of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
5
|
Goel H, Kumar R, Tanwar P, Upadhyay TK, Khan F, Pandey P, Kang S, Moon M, Choi J, Choi M, Park MN, Kim B, Saeed M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed Pharmacother 2023; 160:114351. [PMID: 36736284 DOI: 10.1016/j.biopha.2023.114351] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies distinguished by differentiation blockage and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow (BM) and peripheral blood (PB). There are various types of leukemia in which intensive chemotherapy regimens or hematopoietic stem cell transplantation (HSCT) are now the most common treatments associated with severe side effects and multi-drug resistance in leukemia cells. Therefore, it is crucial to develop novel therapeutic approaches with adequate therapeutic efficacy and selectively eliminate leukemic cells to improve the consequences of leukemia. Medicinal plants have been utilized for ages to treat multiple disorders due to their diverse bioactive compounds. Plant-derived products have been used as therapeutic medication to prevent and treat many types of cancer. Over the last two decades, 50 % of all anticancer drugs approved worldwide are from natural products and their derivatives. Therefore this study aims to review natural products such as polyphenols, alkaloids, terpenoids, nitrogen-containing, and organosulfur compounds as antileukemic agents. Current investigations have identified natural products efficiently destroy leukemia cells through diverse mechanisms of action by inhibiting proliferation, reactive oxygen species production, inducing cell cycle arrest, and apoptosis in both in vitro, in vivo, and clinical studies. Current investigations have identified natural products as suitable promising chemotherapeutic and chemopreventive agents. It played an essential role in drug development and emerged as a possible source of biologically active metabolites for therapeutic interventions, especially in leukemia. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Rahul Kumar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India,.
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Hail 81411 Saudi Arabia.
| |
Collapse
|
6
|
Mizuno H, Koya J, Masamoto Y, Kagoya Y, Kurokawa M. Evi1 upregulates Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate pathway activation. Cancer Sci 2021; 112:4112-4126. [PMID: 34363719 PMCID: PMC8486204 DOI: 10.1111/cas.15098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023] Open
Abstract
Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1‐driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes. Metabolome analysis using Evi1‐overexpressing leukemia cells uncovered pentose phosphate pathway upregulation by Evi1 overexpression. Suppression of Fbp1 as well as pentose phosphate pathway enzymes by shRNA‐mediated knockdown selectively decreased Evi1‐driven leukemogenesis in vitro. Moreover, pharmacological or shRNA‐mediated Fbp1 inhibition in secondarily transplanted Evi1‐overexpressing leukemia mouse significantly decreased leukemia cell burden. Collectively, targeting FBP1 is a promising therapeutic strategy of high Evi1 AML.
Collapse
Affiliation(s)
- Hideaki Mizuno
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Chen L, Hu N, Wang C, Zhao H. HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys 2020; 680:108244. [DOI: 10.1016/j.abb.2019.108244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
|
8
|
Pereira O, Teixeira A, Sampaio-Marques B, Castro I, Girão H, Ludovico P. Signalling mechanisms that regulate metabolic profile and autophagy of acute myeloid leukaemia cells. J Cell Mol Med 2018; 22:4807-4817. [PMID: 30117681 PMCID: PMC6156238 DOI: 10.1111/jcmm.13737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient‐sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB‐4, HL‐60 and KG‐1) and their impact on autophagy and survival was characterized. Data show that whereas KG‐1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co‐activation of AMPK and mTORC1 associated with increased autophagy, NB‐4 and HL‐60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG‐1 cells’ survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti‐leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.
Collapse
Affiliation(s)
- Olga Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Science (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|