1
|
Nolte P, Brettmacher M, Gröger CJ, Gellhaus T, Svetlove A, Schilling AF, Alves F, Rußmann C, Dullin C. Spatial correlation of 2D hard-tissue histology with 3D microCT scans through 3D printed phantoms. Sci Rep 2023; 13:18479. [PMID: 37898676 PMCID: PMC10613209 DOI: 10.1038/s41598-023-45518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023] Open
Abstract
Hard-tissue histology-the analysis of thin two-dimensional (2D) sections-is hampered by the opaque nature of most biological specimens, especially bone. Therefore, the cutting process cannot be assigned to regions of interest. In addition, the applied cutting-grinding method is characterized by significant material loss. As a result, relevant structures might be missed or destroyed, and 3D features can hardly be evaluated. Here, we present a novel workflow, based on conventual microCT scans of the specimen prior to the cutting process, to be used for the analysis of 3D structural features and for directing the sectioning process to the regions of interest. 3D printed fiducial markers, embedded together with the specimen in resin, are utilized to retrospectively register the obtained 2D histological images into the 3D anatomical context. This not only allows to identify the cutting position, but also enables the co-registration of the cell and extracellular matrix morphological analysis to local 3D information obtained from the microCT data. We have successfully applied our new approach to assess hard-tissue specimens of different species. After matching the predicted microCT cut plane with the histology image, we validated a high accuracy of the registration process by computing quality measures namely Jaccard and Dice similarity coefficients achieving an average score of 0.90 ± 0.04 and 0.95 ± 0.02, respectively. Thus, we believe that the novel, easy to implement correlative imaging approach holds great potential for improving the reliability and diagnostic power of classical hard-tissue histology.
Collapse
Affiliation(s)
- Philipp Nolte
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Marcel Brettmacher
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Chris Johann Gröger
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Tim Gellhaus
- Department of Oral and Maxillofacial Surgery, University Medical Center, Göttingen, Germany
| | - Angelika Svetlove
- Max Plank Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center, Göttingen, Germany
| | - Frauke Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Max Plank Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - Christoph Rußmann
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- Max Plank Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department for Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
3
|
Hügl S, Eckardt F, Lexow GJ, Majdani O, Lenarz T, Rau TS. Increasing the resolution of morphological 3D image data sets through image stitching: application to the temporal bone. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2016. [DOI: 10.1080/21681163.2015.1137080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Hügl
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - F. Eckardt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - G. J. Lexow
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
| | - O. Majdani
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
| | - Th. Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover Medical School, Hannover, Germany
| | - Th. S. Rau
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Hanekom T, Hanekom JJ. Three-dimensional models of cochlear implants: A review of their development and how they could support management and maintenance of cochlear implant performance. NETWORK (BRISTOL, ENGLAND) 2016; 27:67-106. [PMID: 27136100 DOI: 10.3109/0954898x.2016.1171411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Three-dimensional (3D) computational modeling of the auditory periphery forms an integral part of modern-day research in cochlear implants (CIs). These models consist of a volume conduction description of implanted stimulation electrodes and the current distribution around these, coupled with auditory nerve fiber models. Cochlear neural activation patterns can then be predicted for a given input stimulus. The objective of this article is to present the context of 3D modeling within the field of CIs, the different models, and approaches to models that have been developed over the years, as well as the applications and potential applications of these models. The process of development of 3D models is discussed, and the article places specific emphasis on the complementary roles of generic models and user-specific models, as the latter is important for translation of these models into clinical application.
Collapse
Affiliation(s)
- Tania Hanekom
- a Bioengineering, Department of Electrical, Electronic and Computer Engineering , University of Pretoria , Pretoria , South Africa
| | - Johan J Hanekom
- a Bioengineering, Department of Electrical, Electronic and Computer Engineering , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
5
|
Wang Y, Xu R, He W, Yao Z, Li H, Zhou J, Tan J, Yang S, Zhan R, Luo G, Wu J. Three-Dimensional Histological Structures of the Human Dermis. Tissue Eng Part C Methods 2015; 21:932-44. [PMID: 25781868 DOI: 10.1089/ten.tec.2014.0578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spatial information has been shown to be critical for cell differentiation and function. Therefore, a better understanding of skin microstructures is very important for biomimetic and bioengineered scaffolds of engineering skin. The purpose of the study was to generate collagen/elastin-based three-dimensional (3D) images of human dermis to further understand the microstructures of the skin, which is believed to be helpful in the fabrication of bionic engineered skin. Skin samples were fixed, embedded, serially sectioned, stained with aldehyde-fuchsin, and photographed as serial panoramas. Dermal subregions were divided according to dermal depth and distance to hair follicle. The porosity, pore diameters, and wall thickness of human acellular dermal matrix (ADM) were measured by microcomputed tomography (micro-CT). Three-dimensional reconstructed images of collagen and elastic fibers were generated. Our results showed that there were fewer elastic fibers in the subregions close to hair follicles than in the subregions far away from hair follicles (p<0.001), but the collagen fibers were evenly distributed. Both collagen and elastic fibers were found in fewer numbers in the layers either close to the epidermis or close to the hypodermis. The mean proportions of collagen fibers and elastic fibers in the whole dermis were 28.96%±14.63% and 8.06%±3.75%, respectively. The porosity of ADM calculated by micro-CT was 68.3%±5.8%. The mean pore diameter of ADM was 131.2±96.8 μm, and the wall thickness of pores was 207.2±251.7 μm. This study represents for the first time that 3D histological cutaneous structures have been presented, which may be helpful for the next generation of skin engineering.
Collapse
Affiliation(s)
- Yuzhen Wang
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Rui Xu
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Weifeng He
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Zhihui Yao
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Haisheng Li
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Junyi Zhou
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Jianglin Tan
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Sisi Yang
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Rixing Zhan
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Gaoxing Luo
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| | - Jun Wu
- 1 State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Disease Proteomics , Chongqing, China
| |
Collapse
|
7
|
Kahrs LA, Labadie RF. Freely-available, true-color volume rendering software and cryohistology data sets for virtual exploration of the temporal bone anatomy. ORL J Otorhinolaryngol Relat Spec 2013; 75:46-53. [PMID: 23689270 DOI: 10.1159/000347083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cadaveric dissection of temporal bone anatomy is not always possible or feasible in certain educational environments. Volume rendering using CT and/or MRI helps understanding spatial relationships, but they suffer in nonrealistic depictions especially regarding color of anatomical structures. Freely available, nonstained histological data sets and software which are able to render such data sets in realistic color could overcome this limitation and be a very effective teaching tool. METHODS With recent availability of specialized public-domain software, volume rendering of true-color, histological data sets is now possible. We present both feasibility as well as step-by-step instructions to allow processing of publicly available data sets (Visible Female Human and Visible Ear) into easily navigable 3-dimensional models using free software. RESULTS Example renderings are shown to demonstrate the utility of these free methods in virtual exploration of the complex anatomy of the temporal bone. After exploring the data sets, the Visible Ear appears more natural than the Visible Human. CONCLUSION We provide directions for an easy-to-use, open-source software in conjunction with freely available histological data sets. This work facilitates self-education of spatial relationships of anatomical structures inside the human temporal bone as well as it allows exploration of surgical approaches prior to cadaveric testing and/or clinical implementation.
Collapse
Affiliation(s)
- Lüder Alexander Kahrs
- Department of Otolaryngology, Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA. lueder.kahrs @ imes.uni-hannover.de
| | | |
Collapse
|
8
|
Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J Comput Assist Radiol Surg 2013; 8:481-509. [PMID: 23633112 PMCID: PMC3702969 DOI: 10.1007/s11548-013-0825-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/27/2013] [Indexed: 11/02/2022]
Abstract
PURPOSE This paper presents a highly accurate cross-sectional preparation technique. The research aim was to develop an adequate imaging modality for both soft and bony tissue structures featuring high contrast and high resolution. Therefore, the advancement of an already existing micro-grinding procedure was pursued. The central objectives were to preserve spatial relations and to ensure the accurate three-dimensional reconstruction of histological sections. METHODS Twelve human temporal bone specimens including middle and inner ear structures were utilized. They were embedded in epoxy resin, then dissected by serial grinding and finally digitalized. The actual abrasion of each grinding slice was measured using a tactile length gauge with an accuracy of one micrometre. The cross-sectional images were aligned with the aid of artificial markers and by applying a feature-based, custom-made auto-registration algorithm. To determine the accuracy of the overall reconstruction procedure, a well-known reference object was used for comparison. To ensure the compatibility of the histological data with conventional clinical image data, the image stacks were finally converted into the DICOM standard. RESULTS The image fusion of data from temporal bone specimens' and from non-destructive flat-panel-based volume computed tomography confirmed the spatial accuracy achieved by the procedure, as did the evaluation using the reference object. CONCLUSION This systematic and easy-to-follow preparation technique enables the three-dimensional (3D) histological reconstruction of complex soft and bony tissue structures. It facilitates the creation of detailed and spatially correct 3D anatomical models. Such models are of great benefit for image-based segmentation and planning in the field of computer-assisted surgery as well as in finite element analysis. In the context of human inner ear surgery, three-dimensional histology will improve the experimental evaluation and determination of intra-cochlear trauma after the insertion of an electrode array of a cochlear implant system.
Collapse
|