1
|
Irving M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol 2025; 22:9-19. [PMID: 39030271 DOI: 10.1038/s41569-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart - this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre for Research Excellence, King's College London, London, UK.
| |
Collapse
|
2
|
Ahmadi ZA, Dizaji MM, Sadeghpour A, Khesali H, Firouzi A. Comparison of two ellipsoidal models for the estimation of left ventricular end-systolic stress in patients with significant coronary artery disease. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:62. [PMID: 38024519 PMCID: PMC10668221 DOI: 10.4103/jrms.jrms_4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 12/01/2023]
Abstract
Background The shape of the left ventricle (LV) is an important index to explore cardiac pathophysiology. A comparison was provided to estimate circumferential, longitudinal, and radial wall stress in LV based on the thick-walled ellipsoidal models of Mirsky and Ghista-Sandler for discriminating significant coronary artery disease (CAD) patients from no CAD patients. Materials and Methods According to the angiography findings, 82 patients with CAD were divided into two groups: 25 patients without significant CAD and 57 patients with significant CAD of single vessel and multivessel. An ellipsoidal LV geometry was used to calculate end-systolic passive stress as the mechanical behavior of LV. Echocardiographic views-based measurements of LV diameters used to estimate the end-systolic wall stress. Results Circumferential wall stress between the control group and significant CAD groups was significantly elevated for the Ghista model (P = 0.008); also, radial and longitudinal stress of the multi-vessel CAD group was significantly higher than the control group (P = 0.01 and P = 0.005, respectively). All stress parameters of the multi-vessel CAD group were statistically significant compared to the control group for the Mirsky model. Receiver operating characteristics curve analysis was shown the circumferential stress of multi-vessel CAD with an area under the curve (AUC) of 0.736 for the Ghista model and an AUC of 0.742 for the Mirsky model. Conclusion These results indicated that Ghista and Mirsky model estimates of circumferential passive stress were the potential biomechanical markers to predict patients with multi-vessel CAD. It could be a noninvasive and helpful tool to quantify the contractility of LV.
Collapse
Affiliation(s)
- Zeinab Alsadat Ahmadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anita Sadeghpour
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Khesali
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Firouzi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
MacIver DH, Scrase T, Zhang H. Left ventricular contractance: A new measure of contractile function. Int J Cardiol 2023; 371:345-353. [PMID: 36084798 DOI: 10.1016/j.ijcard.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
AIMS Myocardial contractility is poorly defined and difficult to compare between studies. Contractance or myocardial active strain energy density (MASED) measures the mechanical work done per unit volume (with units of kJ/m3) by any cardiac tissue during contraction. Contractance is an ideal candidate for measuring contractile function as it combines information from both stress and strain. METHODS AND RESULTS Data obtained from three previously published experimental studies using trabecular tissue was used to provide contemporaneous nominal stress and strain data in 18 different scenarios with different loading conditions. Contractance varied in the differing loading conditions with values of 1.16 (low preload), 2.02 (high afterload) and 3.76 kJ/m3 (normal). Contractance varied between 0 with isometric loading and 2.14 kJ/m3 with an isotonic and moderate afterload. Increasing inotropy increased contractance to 4.7 kJ/m3. CONCLUSION We showed that calculating MASED was feasible and provided a measure of energy production (work done) per unit volume of myocardium during contraction. The new term for contractile function, contractance, can be defined and quantified by MASED. Contractance measures contractile function in differing preload, afterload and inotropic settings. The method of measuring contractance is transferable to the assessment of global and regional systolic function.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, United Kingdom; Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom.
| | - Thomas Scrase
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Ahmadi ZA, Mokhtari Dizaji M, Sadeghpour A, Khesali H, Firouzi A. Estimation of the segmental left ventricular physical and mechanical parameters using echocardiographic imaging for stent candidate patients. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:20-28. [PMID: 36069427 DOI: 10.1002/jcu.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Left ventricular (LV) dysfunction can be assessed by quantifying LV structure. In this study, physical parameters were extracted, including the systolic strain, wall stress, and elastic modulus of LV to diagnose stent candidate patients from the control group. METHODS Based on angiography results, 88 patients with coronary artery disease (CAD) were divided into 64 patients candidates for PCI (percutaneous coronary intervention) and 24 patients in the control group. With the thick-walled ellipsoidal model, the passive wall stresses at end-systole and end-diastole were estimated. Regional circumferential strain and regional longitudinal strain were obtained by speckle tracking technique. RESULTS The inferoseptal circumferential wall stress in end-systole was statistically significant for the PCI group compared to the control group (p = .026). Anterior and inferoseptal circumferential strain for the PCI group (-17.25 ± 4.22 and -18.21 ± 4.04%) compared to the control group (-21.71 ± 4.74 and 20.58 ± 3.04%) were statistically significant, respectively (p = .000 and p = .011). Anterior and inferoseptal circumferential elastic modulus were statistically significant (p = .000 and p = .005). The receiver operator characteristic (ROC) curve analysis revealed that anterior and inferoseptal circumferential elastic modulus had the highest area under the curve with 76.6% sensitivity, 83.3% specificity for anterior circumferential, 68.8% sensitivity, and 70.8% specificity for inferoseptal circumferential, for the diagnosis of stent candidate patients. CONCLUSIONS Regional elastic modulus parameter is suggested as a noninvasive and quantitative method for measuring LV function. Strain and stress parameters using the STE method and geometrical model can be helpful for diagnostic stent candidate patients.
Collapse
Affiliation(s)
- Zeinab Alsadat Ahmadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anita Sadeghpour
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Khesali
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Firouzi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gherbesi E, Carugo S. Left ventricular mechanics for the diagnosis of coronary artery disease: Is there space for a role in clinical practice? JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:29-30. [PMID: 36468249 DOI: 10.1002/jcu.23329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Elisa Gherbesi
- Department of Cardiology, Fondazione IRCCS Ospedale Maggiore Policlinico di Milano and Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| | - Stefano Carugo
- Department of Cardiology, Fondazione IRCCS Ospedale Maggiore Policlinico di Milano and Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| |
Collapse
|
6
|
KHOSRAVANIPOUR MOHAMMADJAVAD, MOKHTARI-DIZAJI MANIJHE, FARHAN FARSHID, SATTARZADEH-BADKOUBEH ROYA. COMPARISON OF TWO THICK SHELL MODELS PERFORMANCE IN NONINVASIVE EVALUATION OF MYOCARDIAL WALL STRESS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary artery stenosis is the most common heart disease, leading to altered myocardial mechanics. This study aimed to compare Ghista–Sandler and Mirsky wall stress models and evaluate the discriminant analysis of noninvasive wall stress based on these models. 59 Coronary artery disease (CAD) patients were divided into two groups; moderate stenosis and severe stenosis in the left anterior descending artery proximal part were enrolled in this study. The wall stress in the end-systolic and end-diastolic phases at LV anterior and interventricular septum wall segments calculated by using the equation proposed by Ghista–Sandler and Mirsky. The specificity and sensitivity of wall stress at groups were calculated by Ghista–Sandler and Mirsky models. The wall thickness and principal radius of segments in healthy subjects and patients with severe and moderate stenosis were shown statistically differences in some segments of anterior and septum walls ([Formula: see text]). Statistical analysis showed that calculated stresses in myocardial wall segments of patients with severe and moderate coronary stenosis and healthy people had a significant difference in systole and diastolic phase. Results of the discriminant analysis showed the specificity value obtained by the Ghista–Sandler model were higher in most wall stress combinations than the Mirsky model. Sensitivity in identifying patients with severe stenosis was higher in the Ghista–Sandler model. It is concluded that specificity and sensitivity based on wall stresses calculated by the Ghista–Sandler model were higher in comparison with the Mirsky model. The Ghista–Sandler model has better performance than the Mirsky model in diagnosing patients with stenosis.
Collapse
Affiliation(s)
| | - MANIJHE MOKHTARI-DIZAJI
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - FARSHID FARHAN
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Excitation and Contraction of the Failing Human Heart In Situ and Effects of Cardiac Resynchronization Therapy: Application of Electrocardiographic Imaging and Speckle Tracking Echo-Cardiography. HEARTS 2021. [DOI: 10.3390/hearts2030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the success of cardiac resynchronization therapy (CRT) for treating heart failure (HF), the rate of nonresponders remains 30%. Improvements to CRT require understanding of reverse remodeling and the relationship between electrical and mechanical measures of synchrony. The objective was to utilize electrocardiographic imaging (ECGI, a method for noninvasive cardiac electrophysiology mapping) and speckle tracking echocardiography (STE) to study the physiology of HF and reverse remodeling induced by CRT. We imaged 30 patients (63% male, mean age 63.7 years) longitudinally using ECGI and STE. We quantified CRT-induced remodeling of electromechanical parameters and evaluated a novel index, the electromechanical delay (EMD, the delay from activation to peak contraction). We also measured dyssynchrony using ECGI and STE and compared their effectiveness for predicting response to CRT. EMD values were elevated in HF patients compared to controls. However, the EMD values were dependent on the activation sequence (CRT-paced vs. un-paced), indicating that the EMD is not intrinsic to the local tissue, but is influenced by factors such as opposing wall contractions. After 6 months of CRT, patients had increased contraction in native rhythm compared to baseline pre-CRT (baseline: −8.55%, 6 months: −10.14%, p = 0.008). They also had prolonged repolarization at the location of the LV pacing lead. The pre-CRT delay between mean lateral LV and RV electrical activation time was the best predictor of beneficial reduction in LV end systolic volume by CRT (Spearman’s Rho: −0.722, p < 0.001); it outperformed mechanical indices and 12-lead ECG criteria. HF patients have abnormal EMD. The EMD depends upon the activation sequence and is not predictive of response to CRT. ECGI-measured LV activation delay is an effective index for CRT patient selection. CRT causes persistent improvements in contractile function.
Collapse
|
8
|
Kumar V, Manduca A, Rao C, Ryu AJ, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. An under-recognized phenomenon: Myocardial volume change during the cardiac cycle. Echocardiography 2021; 38:1235-1244. [PMID: 34085722 DOI: 10.1111/echo.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Myocardial volume is assumed to be constant over the cardiac cycle in the echocardiographic models used by professional guidelines, despite evidence that suggests otherwise. The aim of this paper is to use literature-derived myocardial strain values from healthy patients to determine if myocardial volume changes during the cardiac cycle. METHODS A systematic review for studies with longitudinal, radial, and circumferential strain from echocardiography in healthy volunteers ultimately yielded 16 studies, corresponding to 2917 patients. Myocardial volume in systole (MVs) and diastole (MVd) was used to calculate MVs/MVd for each study by applying this published strain data to three models: the standard ellipsoid geometric model, a thin-apex geometric model, and a strain-volume ratio. RESULTS MVs/MVd<1 in 14 of the 16 studies, when computed using these three models. A sensitivity analysis of the two geometric models was performed by varying the dimensions of the ellipsoid and calculating MVs/MVd. This demonstrated little variability in MVs/MVd, suggesting that strain values were the primary determinant of MVs/MVd rather than the geometric model used. Another sensitivity analysis using the 97.5th percentile of each orthogonal strain demonstrated that even with extreme values, in the largest two studies of healthy populations, the calculated MVs/MVd was <1. CONCLUSIONS Healthy human myocardium appears to decrease in volume during systole. This is seen in MRI studies and is clinically relevant, but this study demonstrates that this characteristic was also present but unrecognized in the existing echocardiography literature.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Chaitanya Rao
- Electrical Engineer, self-employed, Melbourne, Australia
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Voorhees AP, Hua Y, Brazile BL, Wang B, Waxman S, Schuman JS, Sigal IA. So-Called Lamina Cribrosa Defects May Mitigate IOP-Induced Neural Tissue Insult. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33165501 PMCID: PMC7671862 DOI: 10.1167/iovs.61.13.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The prevailing theory about the function of lamina cribrosa (LC) connective tissues is that they provide structural support to adjacent neural tissues. Missing connective tissues would compromise this support and therefore are regarded as “LC defects”, despite scarce actual evidence of their role. We examined how so-called LC defects alter IOP-related mechanical insult to the LC neural tissues. Methods We built numerical models incorporating LC microstructure from polarized light microscopy images. To simulate LC defects of varying sizes, individual beams were progressively removed. We then compared intraocular pressure (IOP)-induced neural tissue deformations between models with and without defects. To better understand the consequences of defect development, we also compared neural tissue deformations between models with partial and complete loss of a beam. Results The maximum stretch of neural tissues decreased non-monotonically with defect size. Maximum stretch in the model with the largest defect decreased by 40% in comparison to the model with no defects. Partial loss of a beam increased the maximum stretch of neural tissues in its adjacent pores by 162%, compared with 63% in the model with complete loss of a beam. Conclusions Missing LC connective tissues can mitigate IOP-induced neural tissue insult, suggesting that the role of the LC connective tissues is more complex than simply fortifying against IOP. The numerical models further predict that partial loss of a beam is biomechanically considerably worse than complete loss of a beam, perhaps explaining why defects have been reported clinically but partial beams have not.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States.,Center for Neural Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Department of Physiology and Neuroscience, Neuroscience Institute, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Coutinho e Silva RDS, Zanoni FL, Simas R, Moreira LFP. Perspectives of bilateral thoracic sympathectomy for treatment of heart failure. Clinics (Sao Paulo) 2021; 76:e3248. [PMID: 34378733 PMCID: PMC8311637 DOI: 10.6061/clinics/2021/e3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Surgical neuromodulation therapies are still considered a last resort when standard therapies have failed for patients with progressive heart failure (HF). Although a number of experimental studies have provided robust evidence of its effectiveness, the lack of strong clinical evidence discourages practitioners. Thoracic unilateral sympathectomy has been extensively studied and has failed to show significant clinical improvement in HF patients. Most recently, bilateral sympathectomy effect was associated with a high degree of success in HF models, opening the perspective to be investigated in randomized controlled clinical trials. In addition, a series of clinical trials showed that bilateral sympathectomy was associated with a decreased risk of sudden death, which is an important outcome in patients with HF. These aspects indicates that bilateral sympathectomy could be an important alternative in the treatment of HF wherein pharmacological treatment barely reaches the target dose.
Collapse
Affiliation(s)
- Raphael dos Santos Coutinho e Silva
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Fernando Luiz Zanoni
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Rafael Simas
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Luiz Felipe Pinho Moreira
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
11
|
Naddaf S, Ehrenberg S, Hakim R, Mahamid M, Turgeman Y, Koren O. Epinephrine soaked tampons induced transient acute dilated cardiomyopathy during FESS procedure. BMC Cardiovasc Disord 2020; 20:452. [PMID: 33066731 PMCID: PMC7566064 DOI: 10.1186/s12872-020-01706-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
Background Epinephrine, in all modes of use, may pose a wide range of cardiotoxic events, ranging from sinus tachycardia to heart failure, life threatening arrhythmias, and even death. Because of daily and extensive use of epinephrine, these unusual and rare events tend to be forgotten by physicians. We present a case of dilated cardiomyopathy that developed following routine use of epinephrine-impregnated tampons during function endoscopic sinus (FESS) surgery. Case presentation A healthy, 24-year-old man with no family history of heart disease has undergone elective surgery under general anesthesia to repair the paranasal sinuses using endoscopic approach. During surgery, soon after being treated with 1: 1000 diluted epinephrine-soaked tampons, an hypertensive crisis was noticed followed by pulseless electrical activity. An extensive examination led to the diagnosis of non-ischemic dilated cardiomyopathy. After several days of heart failure medical therapy, complete resolution of all structural and functional changes was achieved. Conclusion In our case, we present an unusual and rare event of acute dilated cardiomyopathy following the use of epinephrine-soaked tampons during elective FESS surgery. A prompt response was observed after several days of heart failure treatment. Awareness of the epinephrine cardiotoxic potential even in the form of soaked tampons is essential for proper diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Sari Naddaf
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Scott Ehrenberg
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Hakim
- Department of Anaesthesia, Emek Medical Center, Afula, Israel
| | | | - Yoav Turgeman
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Heart Institute, Emek Medical Center, Afula, Israel
| | - Ofir Koren
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Heart Institute, Emek Medical Center, Afula, Israel.
| |
Collapse
|
12
|
Zhao X, Teo SK, Zhong L, Leng S, Zhang JM, Low R, Allen J, Koh AS, Su Y, Tan RS. Reference Ranges for Left Ventricular Curvedness and Curvedness-Based Functional Indices Using Cardiovascular Magnetic Resonance in Healthy Asian Subjects. Sci Rep 2020; 10:8465. [PMID: 32439884 PMCID: PMC7242400 DOI: 10.1038/s41598-020-65153-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Curvature-based three-dimensional cardiovascular magnetic resonance (CMR) allows regional function characterization without an external spatial frame of reference. However, introduction of this modality into clinical practice is hampered by lack of reference values. We aim to establish normal ranges for 3D left ventricular (LV) regional parameters in relation to age and gender for 171 healthy subjects. LV geometrical reconstruction and automatic calculation of regional parameters were implemented by in-house software (CardioWerkz) using stacks of short-axis cine slices. Parameter normal ranges were stratified by gender and age categories (≤44, 45-64, 65-74 and 75-84 years). Our software had excellent intra- and inter-observer agreement. Ageing was significantly associated with increases in end-systolic (ES) curvedness (CES) and area strain (AS) with higher rates of increase in males, end-diastolic (ED) and ES wall thickness (WTED, WTES) with higher rates of increase in females, and reductions in ED and ES wall stress indices (σi,ED) with higher rates of increase in females. Females exhibited greater ED curvedness, CES, σi,ED and AS than males, but smaller WTED and WTES. Age × gender interaction was not observed for any parameter. This study establishes age and gender specific reference values for 3D LV regional parameters using CMR without additional image acquisition.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Soo-Kng Teo
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore. .,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Jun-Mei Zhang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ris Low
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - John Allen
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Angela S Koh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yi Su
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
13
|
Rodriguez ML, Werner TR, Becker B, Eschenhagen T, Hirt MN. A magnetics-based approach for fine-tuning afterload in engineered heart tissues. ACS Biomater Sci Eng 2019; 5:3663-3675. [PMID: 31637285 DOI: 10.1021/acsbiomaterials.8b01568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Afterload plays important roles during heart development and disease progression, however, studying these effects in a laboratory setting is challenging. Current techniques lack the ability to precisely and reversibly alter afterload over time. Here, we describe a magnetics-based approach for achieving this control and present results from experiments in which this device was employed to sequentially increase afterload applied to rat engineered heart tissues (rEHTs) over a 7-day period. The contractile properties of rEHTs grown on control posts marginally increased over the observation period. The average post deflection, fractional shortening, and twitch velocities measured for afterload-affected tissues initially followed this same trend, but fell below control tissue values at high magnitudes of afterload. However, the average force, force production rate, and force relaxation rate for these rEHTs were consistently up to 3-fold higher than in control tissues. Transcript levels of hypertrophic or fibrotic markers and cell size remained unaffected by afterload, suggesting that the increased force output was not accompanied by pathological remodeling. Accordingly, the increased force output was fully reversed to control levels during a stepwise decrease in afterload over 4 hours. Afterload application did not affect systolic or diastolic tissue lengths, indicating that the afterload system was likely not a source of changes in preload strain. In summary, the afterload system developed herein is capable of fine-tuning EHT afterload while simultaneously allowing optical force measurements. Using this system, we found that small daily alterations in afterload can enhance the contractile properties of rEHTs, while larger increases can have temporary undesirable effects. Overall, these findings demonstrate the significant role that afterload plays in cardiac force regulation. Future studies with this system may allow for novel insights into the mechanisms that underlie afterload-induced adaptations in cardiac force development.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Tessa R Werner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Benjamin Becker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Zhao X, Tan RS, Tang HC, Teo SK, Su Y, Wan M, Leng S, Zhang JM, Allen J, Kassab GS, Zhong L. Left Ventricular Wall Stress Is Sensitive Marker of Hypertrophic Cardiomyopathy With Preserved Ejection Fraction. Front Physiol 2018; 9:250. [PMID: 29643812 PMCID: PMC5882847 DOI: 10.3389/fphys.2018.00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) patients present altered myocardial mechanics due to the hypertrophied ventricular wall and are typically diagnosed by the increase in myocardium wall thickness. This study aimed to quantify regional left ventricular (LV) shape, wall stress and deformation from cardiac magnetic resonance (MR) images in HCM patients and controls, in order to establish superior measures to differentiate HCM from controls. A total of 19 HCM patients and 19 controls underwent cardiac MR scans. The acquired MR images were used to reconstruct 3D LV geometrical models and compute the regional parameters (i.e., wall thickness, curvedness, wall stress, area strain and ejection fraction) based on the standard 16 segment model using our in-house software. HCM patients were further classified into four quartiles based on wall thickness at end diastole (ED) to assess the impact of wall thickness on these regional parameters. There was a significant difference between the HCM patients and controls for all regional parameters (P < 0.001). Wall thickness was greater in HCM patients at the end-diastolic and end-systolic phases, and thickness was most pronounced in segments at the septal regions. A multivariate stepwise selection algorithm identified wall stress index at ED (σi,ED) as the single best independent predictor of HCM (AUC = 0.947). At the cutoff value σi,ED < 1.64, both sensitivity and specificity were 94.7%. This suggests that the end-diastolic wall stress index incorporating regional wall curvature—an index based on mechanical principle—is a sensitive biomarker for HCM diagnosis with potential utility in diagnostic and therapeutic assessment.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Hak-Chiaw Tang
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Soo-Kng Teo
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi Su
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Min Wan
- School of Information Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Jun-Mei Zhang
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - John Allen
- Duke-NUS Medical School, Singapore, Singapore
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Halade GV, Kain V, Ingle KA. Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol 2017; 314:H255-H267. [PMID: 29101178 DOI: 10.1152/ajpheart.00528.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) secondary to myocardial infarction (MI) is linked to kidney complications that comprise cellular, structural, functional, and survival indicators. However, HF research is focused on left ventricular (LV) pathology. Here, we determined comprehensive functional analysis of the LV using echocardiography in transition from acute heart failure (AHF) to progressive chronic heart failure (CHF) pathology and developed a histological compendium of the cardiosplenic and cardiorenal networks in pathological remodeling. In surgically induced MI using permanent coronary ligation, the LV dysfunction is pronounced, with myocardium necrosis, wall thinning, and 20-30% LV rupture events that indicated AHF and CHF pathological remodeling in C57BL/6 male mice (2-4 mo old, n = 50). Temporal LV function analysis indicated that fractional shortening and strain are reduced from day 1 to day 5 in AHF and sustained to advance to CHF from day 28 to day 56 compared with naïve control mice ( n = 6). During the transition of AHF ( day 1 to day 5) to advanced CHF ( day 28 to day 56), histological and cellular changes in the spleen were definite, with bimodal inflammatory responses in kidney inflammatory biomarkers. Likewise, there was a unidirectional, progressive, and irreversible deposition of compact collagen in the LV along with dynamic changes in the cardiosplenic and cardiorenal networks post-MI. The renal histology and injury markers suggested that cardiac injury triggers irreversible dysregulation that actively alters the cardiosplenic and cardiorenal networks. In summary, the novel strategies or pathways that modulate comprehensive cardiosplenic and cardiorenal networks in AHF and CHF would be effective approaches to study either cardiac repair or cardiac pathology. NEW & NOTEWORTHY The present compendium shows irreversible ventricular dysfunction as assessed by temporal echocardiography while histological and structural measurements of the spleen and kidney added a novel direction to study cardiosplenic and cardiorenal networks in heart failure pathology. Therefore, the consideration of systems biology and integrative approach is essential to develop novel treatments.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama
| | - Kevin A Ingle
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama
| |
Collapse
|
16
|
Voorhees AP, Jan NJ, Austin ME, Flanagan JG, Sivak JM, Bilonick RA, Sigal IA. Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult. Invest Ophthalmol Vis Sci 2017; 58:5336-5346. [PMID: 29049736 PMCID: PMC5649511 DOI: 10.1167/iovs.17-22015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose The purpose of this study was to determine how the architecture of the lamina cribrosa (LC) microstructure, including the shape and size of the lamina pores, influences the IOP-induced deformation of the neural tissues within the LC pores using computational modeling. Methods We built seven specimen-specific finite element models of LC microstructure with distinct nonlinear anisotropic properties for LC beams and neural tissues based on histological sections from three sheep eyes. Changes in shape (aspect ratio and convexity) and size (area and perimeter length) due to IOP-induced hoop stress were calculated for 128 LC pores. Multivariate linear regression was used to determine if pore shape and size were correlated with the strain in the pores. We also compared the microstructure models to a homogenized model built following previous approaches. Results The LC microstructure resulted in focal tensile, compressive, and shear strains in the neural tissues of the LC that were not predicted by homogenized models. IOP-induced hoop stress caused pores to become larger and more convex; however, pore aspect ratio did not change consistently. Peak tensile strains within the pores were well predicted by a linear regression model considering the initial convexity (negative correlation, P < 0.001), aspect ratio (positive correlation, P < 0.01), and area (negative correlation, P < 0.01). Significant correlations were also found when considering the deformed shape and size of the LC pores. Conclusions The deformation of the LC neural tissues was largely dependent on the collagenous LC beams. Simple measures of LC pore shape and area provided good estimates of neural tissue biomechanical insult.
Collapse
Affiliation(s)
- Andrew P. Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Morgan E. Austin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - John G. Flanagan
- Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Jeremy M. Sivak
- Ophthalmology and Vison Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard A. Bilonick
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Ferferieva V, D’Elia N, Heyde B, Otahal P, Rademakers F, D’hooge J. Serial assessment of left ventricular morphology and function in a rodent model of ischemic cardiomyopathy. Int J Cardiovasc Imaging 2017; 34:385-397. [DOI: 10.1007/s10554-017-1246-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
18
|
Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN RADIOLOGY 2014; 2014:365404. [PMID: 24967294 PMCID: PMC4045555 DOI: 10.1155/2014/365404] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
Dilated cardiomyopathy (DCM) represents the final common morphofunctional pathway of various pathological conditions in which a combination of myocyte injury and necrosis associated with tissue fibrosis results in impaired mechanical function. Recognition of the underlying aetiology of disease and accurate disease monitoring may be crucial to individually optimize therapeutic strategies and stratify patient's prognosis. In this regard, CMR has emerged as a new reference gold standard providing important information for differential diagnosis and new insight about individual risk stratification. The present review article will focus on the role of CMR in the evaluation of present condition, analysing respective strengths and limitations in the light of current literature and technological developments.
Collapse
Affiliation(s)
- Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena, 324 00161 Rome, Italy
| |
Collapse
|
19
|
Yang T, Chiao YA, Wang Y, Voorhees A, Han HC, Lindsey ML, Jin YF. Mathematical modeling of left ventricular dimensional changes in mice during aging. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S10. [PMID: 23281647 PMCID: PMC3524011 DOI: 10.1186/1752-0509-6-s3-s10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV), which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM) is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT) C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age.
Collapse
Affiliation(s)
- Tianyi Yang
- San Antonio Cardiovascular Proteomics Center, The University of Texas Health Science Center at San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|