1
|
Valente R, Mourato A, Xavier J, Sousa P, Domingues T, Tavares P, Avril S, Tomás A, Fragata J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering (Basel) 2024; 11:745. [PMID: 39199703 PMCID: PMC11351783 DOI: 10.3390/bioengineering11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Experimental protocols are fundamental for quantifying the mechanical behaviour of soft tissue. These data are crucial for advancing the understanding of soft tissue mechanics, developing and calibrating constitutive models, and informing the development of more accurate and predictive computational simulations and artificial intelligence tools. This paper offers a comprehensive review of experimental tests conducted on soft aortic tissues, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, based on the Scopus, Web of Science, IEEE, Google Scholar and PubMed databases. This study includes a detailed overview of the test method protocols, providing insights into practical methodologies, specimen preparation and full-field measurements. The review also briefly discusses the post-processing methods applied to extract material parameters from experimental data. In particular, the results are analysed and discussed providing representative domains of stress-strain curves for both uniaxial and biaxial tests on human aortic tissue.
Collapse
Affiliation(s)
- Rodrigo Valente
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - André Mourato
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.V.); (A.M.)
- Intelligent Systems Associate Laboratory, LASI, 4800-058 Guimarães, Portugal
| | - Pedro Sousa
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Tiago Domingues
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Paulo Tavares
- INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (P.S.); (P.T.)
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, Inserm, Sainbiose U1059, Campus Santé Innovation, 10, rue de la Marandière, 42270 Saint-Priest-en-Jarez, France;
| | - António Tomás
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
| | - José Fragata
- Department of Cardiothoracic Surgery, Santa Marta Hospital, Rua de Santa Marta, 1169-024 Lisboa, Portugal; (A.T.); (J.F.)
- Department of Surgery and Human Morphology, NOVA Medical School, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisboa, Portugal
| |
Collapse
|
2
|
Kriener K, Whiting H, Storr N, Homes R, Lala R, Gabrielyan R, Kuang J, Rubin B, Frails E, Sandstrom H, Futter C, Midwinter M. Applied use of biomechanical measurements from human tissues for the development of medical skills trainers: a scoping review. JBI Evid Synth 2023; 21:2309-2405. [PMID: 37732940 DOI: 10.11124/jbies-22-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION Open Science Framework https://osf.io/fgb34.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harrison Whiting
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Royal Brisbane Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Storr
- Gold Coast University Hospital, Southport, QLD Australia
| | - Ryan Homes
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Raushan Lala
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Gabrielyan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Jasmine Kuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Bryn Rubin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Edward Frails
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hannah Sandstrom
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Christopher Futter
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Anaesthesia and Intensive Care Program, Herston Biofabrication institute, Brisbane, QLD, Australia
| | - Mark Midwinter
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Rivera E, Canales C, Pacheco M, García-Herrera C, Macías D, Celentano DJ, Herrera EA. Biomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy. Sci Rep 2021; 11:13875. [PMID: 34230509 PMCID: PMC8260639 DOI: 10.1038/s41598-021-93267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser-Holzapfel-Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.
Collapse
Affiliation(s)
- Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile.
| | - Claudio Canales
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Matías Pacheco
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Demetrio Macías
- ICD, P2MN, L2n, Université de Technologie de Troyes, ERL 7004, CNRS, Troyes, France
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, ICBM, Universidad de Chile, Av. Salvador 486, Santiago de Chile, Chile
| |
Collapse
|
4
|
Singh M, Varela CE, Whyte W, Horvath MA, Tan NCS, Ong CB, Liang P, Schermerhorn ML, Roche ET, Steele TWJ. Minimally invasive electroceutical catheter for endoluminal defect sealing. SCIENCE ADVANCES 2021; 7:eabf6855. [PMID: 33811080 PMCID: PMC11057783 DOI: 10.1126/sciadv.abf6855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Surgical repair of lumen defects is associated with periprocedural morbidity and mortality. Endovascular repair with tissue adhesives may reduce host tissue damage, but current bioadhesive designs do not support minimally invasive deployment. Voltage-activated tissue adhesives offer a new strategy for endoluminal repair. To facilitate the clinical translation of voltage-activated adhesives, an electroceutical patch (ePATCH) paired with a minimally invasive catheter with retractable electrodes (CATRE) is challenged against the repair of in vivo and ex vivo lumen defects. The ePATCH/CATRE platform demonstrates the sealing of lumen defects up to 2 millimeters in diameter on wet tissue substrates. Water-tight seals are flexible and resilient, withstanding over 20,000 physiological relevant stress/strain cycles. No disruption to electrical signals was observed when the ePATCH was electrically activated on the beating heart. The ePATCH/CATRE platform has diverse potential applications ranging from endovascular treatment of pseudo-aneurysms/fistulas to bioelectrodes toward electrophysiological mapping.
Collapse
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Markus A Horvath
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Nigel C S Tan
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Chee Bing Ong
- Histopathology/Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Marc L Schermerhorn
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Terry W J Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore.
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
5
|
García-Herrera CM, Cuevas ÁA, Celentano DJ, Navarrete Á, Aranda P, Herrera E, Uribe S. Analysis of the passive biomechanical behavior of a sheep-specific aortic artery in pulsatile flow conditions. Comput Methods Biomech Biomed Engin 2021; 24:1228-1241. [PMID: 33475015 DOI: 10.1080/10255842.2021.1872549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, a novel numerical-experimental procedure is proposed, through the use of the Cardiac Simulation Test (CST), device that allows the exposure of the arterial tissue to in-vitro conditions, mimicking cardiac cycles generated by the heart. The main goal is to describe mechanical response of the arterial wall under physiological conditions, when it is subjected to a variable pressure wave over time, which causes a stress state affecting the biomechanical behavior of the artery wall. In order to get information related to stress and strain states, numerical simulation via finite element method, is performed under a condition of systolic and diastolic pressure. The description of this methodological procedure is performed with a sample corresponding to a sheep aorta without cardiovascular pathologies. There are two major findings: the evaluation of the mechanical properties of the sheep aorta through the above-mentioned tests and, the numerical simulation of the mechanical response under the conditions present in the CST. The results state that differences between numerical and experimental circumferential stretch in diastole and systole to distinct zones studied do not exceed 1%. However, greater discrepancies can be seen in the distensibility and incremental modulus, two main indicators, which are in the order of 30%. In addition, numerical results determine an increase of the principal maximum stress and strain between the case of systolic and diastolic pressure, corresponding to 31.1% and 14.9% for the stress and strain measurement respectively; where maximum values of these variables are located in the zone of the ascending aorta and the aortic arch.
Collapse
Affiliation(s)
- Claudio M García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Álvaro A Cuevas
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica, Santiago, Chile.,Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Aranda
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Emilio Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sergio Uribe
- Radiology department and biomedical imaging center, school of medicine, Pontificia Universidad Católica de Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, Chile
| |
Collapse
|
6
|
Akentjew TL, Terraza C, Suazo C, Maksimcuka J, Wilkens CA, Vargas F, Zavala G, Ocaña M, Enrione J, García-Herrera CM, Valenzuela LM, Blaker JJ, Khoury M, Acevedo JP. Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries. Nat Commun 2019; 10:3098. [PMID: 31308369 PMCID: PMC6629634 DOI: 10.1038/s41467-019-11090-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Design strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements. The middle and outer layers were tuned to structurally mimic the media and adventitia layers of native arteries, enabling the fabrication of small bore grafts that exhibit the J-shape mechanical response and compliance of human coronary arteries. This scalable automated system can fabricate cellularized multilayer grafts within 30 min. Grafts were evaluated by hemocompatibility studies and a preliminary in vivo carotid rabbit model. The dip-spinning-SBS technology generates constructs with native mechanical properties and cell-derived biological activities, critical for clinical bypass applications.
Collapse
Affiliation(s)
- Tamara L Akentjew
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
- Consorcio Regenero, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Claudia Terraza
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Cristian Suazo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Jekaterina Maksimcuka
- School of Materials, MSS Tower, The University of Manchester, Manchester, M13 9PL, UK
| | - Camila A Wilkens
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
- Consorcio Regenero, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Francisco Vargas
- Departamento de Cirugía Vascular y Endovascular, Pontificia Universidad Católica de Chile, Avda. Libertador Bernando O'Higgins 340, Santiago, 8331150, Chile
| | - Gabriela Zavala
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Macarena Ocaña
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Javier Enrione
- Biopolymer Research and Engineering Lab (BiopREL), School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Claudio M García-Herrera
- Departmento de Ingeniería Mecánica, Universidad de Santiago de Chile, Avda. Libertador Bernando O'Higgins 3363, Estación Central, Santiago, 9170022, Chile
| | - Loreto M Valenzuela
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Libertador Bernando O'Higgins 340, Macul, Santiago, 7820436, Chile
- Center of Nanotechnology Research and Advanced Materials "CIEN -UC", Pontificia Universidad Católica de Chile, Avda. Libertador Bernando O'Higgins 340, Macul, Santiago, 7820436, Chile
| | - Jonny J Blaker
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester, M13 9PL, UK
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
- Consorcio Regenero, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile
| | - Juan Pablo Acevedo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, 7620001, Chile.
- Cells for Cells, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile.
- Consorcio Regenero, Avda. Plaza 2501, Las Condes, Santiago, 7620157, Chile.
| |
Collapse
|
7
|
Wei W, Evin M, Rapacchi S, Kober F, Bernard M, Jacquier A, Kahn CJF, Behr M. Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root. Biomed Eng Online 2019; 18:19. [PMID: 30808342 PMCID: PMC6391796 DOI: 10.1186/s12938-019-0632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background The axial motion of aortic root (AR) due to ventricular traction was previously suggested to contribute to ascending aorta (AA) dissection by increasing its longitudinal stress, but AR in-plane motion effects on stresses have never been studied. The objective is to investigate the contribution of AR in-plane motion to AA stress levels. Methods The AR in-plane motion was assessed on magnetic resonance imagining data from 25 healthy volunteers as the movement of the AA section centroid. The measured movement was prescribed to the proximal AA end of an aortic finite element model to investigate its influences on aortic stresses. The finite element model was developed from a patient-specific geometry using LS-DYNA solver and validated against the aortic distensibility. Fluid–structure interaction (FSI) approach was also used to simulate blood hydrodynamic effects on aortic dilation and stresses. Results The AR in-plane motion was 5.5 ± 1.7 mm with the components of 3.1 ± 1.5 mm along the direction of proximal descending aorta (PDA) to AA centroid and 3.0 ± 1.3 mm perpendicularly under the PDA reference system. The AR axial motion elevated the longitudinal stress of proximal AA by 40% while the corresponding increase due to in-plane motion was always below 5%. The stresses at proximal AA resulted approximately 7% less in FSI simulation with blood flow. Conclusions The AR in-plane motion was comparable with the magnitude of axial motion. Neither axial nor in-plane motion could directly lead to AA dissection. It is necessary to consider the heterogeneous pressures related to blood hydrodynamics when studying aortic wall stress levels. Electronic supplementary material The online version of this article (10.1186/s12938-019-0632-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Wei
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA, UMR T24, 51 Bd. P. Dramard, 13015, Marseille, France.
| | - Morgane Evin
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA, UMR T24, 51 Bd. P. Dramard, 13015, Marseille, France
| | | | - Frank Kober
- Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Alexis Jacquier
- Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Cyril J F Kahn
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA, UMR T24, 51 Bd. P. Dramard, 13015, Marseille, France
| | - Michel Behr
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA, UMR T24, 51 Bd. P. Dramard, 13015, Marseille, France
| |
Collapse
|
8
|
Bosi GM, Capelli C, Cheang MH, Delahunty N, Mullen M, Taylor AM, Schievano S. Population-specific material properties of the implantation site for transcatheter aortic valve replacement finite element simulations. J Biomech 2018; 71:236-244. [PMID: 29482928 PMCID: PMC5889787 DOI: 10.1016/j.jbiomech.2018.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 10/31/2022]
Abstract
Patient-specific computational models are an established tool to support device development and test under clinically relevant boundary conditions. Potentially, such models could be used to aid the clinical decision-making process for percutaneous valve selection; however, their adoption in clinical practice is still limited to individual cases. To be fully informative, they should include patient-specific data on both anatomy and mechanics of the implantation site. In this work, fourteen patient-specific computational models for transcatheter aortic valve replacement (TAVR) with balloon-expandable Sapien XT devices were retrospectively developed to tune the material parameters of the implantation site mechanical model for the average TAVR population. Pre-procedural computed tomography (CT) images were post-processed to create the 3D patient-specific anatomy of the implantation site. Balloon valvuloplasty and device deployment were simulated with finite element (FE) analysis. Valve leaflets and aortic root were modelled as linear elastic materials, while calcification as elastoplastic. Material properties were initially selected from literature; then, a statistical analysis was designed to investigate the effect of each implantation site material parameter on the implanted stent diameter and thus identify the combination of material parameters for TAVR patients. These numerical models were validated against clinical data. The comparison between stent diameters measured from post-procedural fluoroscopy images and final computational results showed a mean difference of 2.5 ± 3.9%. Moreover, the numerical model detected the presence of paravalvular leakage (PVL) in 79% of cases, as assessed by post-TAVR echocardiographic examination. The final aim was to increase accuracy and reliability of such computational tools for prospective clinical applications.
Collapse
Affiliation(s)
- Giorgia M Bosi
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK; Cardiovascular Engineering Laboratory, UCL Mechanical Engineering, London, UK.
| | - Claudio Capelli
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Mun Hong Cheang
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Nicola Delahunty
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Michael Mullen
- Barts Health NHS Trust, University College London Hospital, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
9
|
Yeh HH, Rabkin SW, Grecov D. Hemodynamic assessments of the ascending thoracic aortic aneurysm using fluid-structure interaction approach. Med Biol Eng Comput 2017; 56:435-451. [PMID: 28798988 DOI: 10.1007/s11517-017-1693-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/18/2017] [Indexed: 12/24/2022]
Abstract
Current assessment and management of ascending thoracic aortic aneurysm (ATAA) rely heavily on the diameter of the ATAA and blood pressure rather than biomechanical and hemodynamic parameters such as arterial wall deformation or wall shear stress. The objective of the current study was to develop an accurate computational method for modeling the mechanical responses of the ATAA to provide additional information in patient evaluations. Fully coupled fluid structure interaction simulations were conducted using data from cases with ATAA with measured geometrical parameters in order to evaluate and analyze the change in biomechanical responses under normotensive and hypertensive conditions. Anisotropic hyperelastic material property estimates were applied to the ATAA data which represented three different geometrical configurations of ATAAs. The resulting analysis showed significant variations in maximum wall shear stress despite minimal differences in flow velocity between two blood pressure conditions. Additionally, the three different ATAA conditions identified different aortic expansions that were not uniform under pulsatile pressure. The elevated wall stress with hypertension was also geometry-dependent. The developed models suggest that ATTA cases have unique characteristic in biomechanical and hemodynamic evaluations that can be useful in risk management.
Collapse
Affiliation(s)
- Han Hung Yeh
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
- Biomedical Engineering Program, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Simon W Rabkin
- Department of Medicine (Cardiology), University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Dana Grecov
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Biomedical Engineering Program, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Modelling and simulation of the mechanical response of a Dacron graft in the pressurization test and an end-to-end anastomosis. J Mech Behav Biomed Mater 2016; 61:36-44. [DOI: 10.1016/j.jmbbm.2016.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/22/2022]
|
11
|
Bosi GM, Biffi B, Biglino G, Lintas V, Jones R, Tzamtzis S, Burriesci G, Migliavacca F, Khambadkone S, Taylor AM, Schievano S. Can finite element models of ballooning procedures yield mechanical response of the cardiovascular site to overexpansion? J Biomech 2016; 49:2778-2784. [PMID: 27395759 PMCID: PMC5522534 DOI: 10.1016/j.jbiomech.2016.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022]
Abstract
Patient-specific numerical models could aid the decision-making process for percutaneous valve selection; in order to be fully informative, they should include patient-specific data of both anatomy and mechanics of the implantation site. This information can be derived from routine clinical imaging during the cardiac cycle, but data on the implantation site mechanical response to device expansion are not routinely available. We aim to derive the implantation site response to overexpansion by monitoring pressure/dimensional changes during balloon sizing procedures and by applying a reverse engineering approach using a validated computational balloon model. This study presents the proof of concept for such computational framework tested in-vitro. A finite element (FE) model of a PTS-X405 sizing balloon (NuMed, Inc., USA) was created and validated against bench tests carried out on an ad hoc experimental apparatus: first on the balloon alone to replicate free expansion; second on the inflation of the balloon in a rapid prototyped cylinder with material deemed suitable for replicating pulmonary arteries in order to validate balloon/implantation site interaction algorithm. Finally, the balloon was inflated inside a compliant rapid prototyped patient-specific right ventricular outflow tract to test the validity of the approach. The corresponding FE simulation was set up to iteratively infer the mechanical response of the anatomical model. The test in this simplified condition confirmed the feasibility of the proposed approach and the potential for this methodology to provide patient-specific information on mechanical response of the implantation site when overexpanded, ultimately for more realistic computational simulations in patient-specific settings.
Collapse
Affiliation(s)
- Giorgia M Bosi
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK.
| | - Benedetta Biffi
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK; Department of Medical Physics & Biomedical Engineering, UCL, London, UK
| | - Giovanni Biglino
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Valentina Lintas
- Laboratory of Biological Structure Mechanics (LaBS), Chemistry, Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| | - Rod Jones
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Spyros Tzamtzis
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, UK
| | - Gaetano Burriesci
- UCL Mechanical Engineering, Cardiovascular Engineering Laboratory, University College London, UK
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Chemistry, Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| | - Sachin Khambadkone
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
12
|
García-Herrera CM, Bustos CA, Celentano DJ, Ortega R. Mechanical analysis of the ring opening test applied to human ascending aortas. Comput Methods Biomech Biomed Engin 2016; 19:1738-1748. [PMID: 27178265 DOI: 10.1080/10255842.2016.1183125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This work presents experiments, modelling and numerical simulation aimed at describing the mechanical response of human ascending aortas in the ring opening test. The objective is to quantify, from the opening angles measured in the test, the residual stress distribution along the artery wall and, afterwards, how this stress pattern changes when the artery is subjected to standard physiological pressures. The cases studied correspond to four groups including both healthy and pathological arteries. The tissues are characterized via tensile test measurements that enable to derive the material parameters of two constitutive models adopted in the present analysis. Overall, the numerical results obtained for all groups were found to be a useful data that allow to estimate the residual stress and their influence on the vessels under normal and hypertension physiological conditions.
Collapse
Affiliation(s)
- Claudio M García-Herrera
- a Departamento de Ingeniería Mecánica , Universidad de Santiago de Chile, USACH , Santiago de Chile , Chile
| | - Claudio A Bustos
- a Departamento de Ingeniería Mecánica , Universidad de Santiago de Chile, USACH , Santiago de Chile , Chile
| | - Diego J Celentano
- b Departamento de Ingeniería Mecánica y Metalúrgica, Instituto de Ingeniería Biológica y Médica (IIBM) , Pontificia Universidad Católica de Chile (PUC) , Santiago de Chile , Chile
| | - Roberto Ortega
- a Departamento de Ingeniería Mecánica , Universidad de Santiago de Chile, USACH , Santiago de Chile , Chile
| |
Collapse
|
13
|
Genovese K, Humphrey JD. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:046005. [PMID: 25867620 DOI: 10.1117/1.jbo.20.4.046005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.
Collapse
Affiliation(s)
- Katia Genovese
- University of Basilicata, School of Engineering, Potenza 85100, Italy
| | - Jay D Humphrey
- Yale University, Department of Biomedical Engineering, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
García-Herrera CM, Celentano DJ. Modelling and numerical simulation of the human aortic arch under in vivo conditions. Biomech Model Mechanobiol 2013; 12:1143-54. [DOI: 10.1007/s10237-013-0471-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/08/2013] [Indexed: 11/30/2022]
|
15
|
Dodson RB, Rozance PJ, Reina-Romo E, Ferguson VL, Hunter KS. Hyperelastic remodeling in the intrauterine growth restricted (IUGR) carotid artery in the near-term fetus. J Biomech 2013; 46:956-63. [PMID: 23332229 DOI: 10.1016/j.jbiomech.2012.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
A constitutive model for a fiber reinforced hyperelastic material was applied to understand arterial fiber remodeling in a sheep model of Intrauterine Growth Restriction (IUGR). IUGR is associated altered hemodynamics characterized by increased resistance to blood flow in the placenta and elevated fetal arterial pressure and pulsatility. The constitutive model describes the collagen contribution to the mechanics within the arterial wall in both control and IUGR carotid artery through defining the material modulus and the orientation of the microstructure. A sheep model of placental insufficiency induced IUGR (PI-IUGR) was created by exposure of the pregnant ewe to elevated ambient temperatures. Experimental data was collected using pressure-diameter measurements to measure passive compliance in control and PI-IUGR carotid arteries. The constitutive model was optimized to fit the experimental data predicting the material parameters. Specifically, the collagen fiber predicted angle (γ) in the control artery was 49.9° from the circumferential axis while the PI-IUGR was 16.6° with a 23.5% increase in fiber orientation (κ). Quantitative assessment of collagen fiber orientation in secondary harmonic generation images confirmed the shift in orientation between the two groups. Together these suggest vascular remodeling of the ECM fiber orientation plays a major role in arterial stiffening in the PI-IUGR near-term fetal sheep.
Collapse
Affiliation(s)
- R Blair Dodson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|