1
|
Yin H, Yan Z, Bauer RJ, Peng J, Schieker M, Nerlich M, Docheva D. Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. ACTA ACUST UNITED AC 2018; 13:034107. [PMID: 29417934 DOI: 10.1088/1748-605x/aaadd1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermosensitive hydrogels have been studied for potential application as promising alternative cell carriers in cell-based regenerative therapies. In this study, a thermosensitive butane diisocyanate (BDI)-collagen hydrogel (BC hydrogel) was designed as an injectable cell delivery carrier of tendon stem/progenitor cells (TSPCs) for tendon tissue engineering. We functionalized the BDI hydrogel with the addition of 20% (v/v) collagen I gel to obtain the thermosensitive BC hydrogel, which was then seeded with TSPCs derived from human Achilles tendons. The BC hydrogel compatibility and TSPC behavior and molecular response to the 3D hydrogel were investigated. Collagen (COL) I gel served as a control group. Our findings demonstrated that the BC hydrogel was thermosensitive, and hardened above 25 °C. It supported TSPC survival, proliferation, and metabolic activity with satisfactory dimension stability and biocompatibility, as revealed by gel contraction assay, live/dead staining, DNA quantification, and resazurin metabolic assay. Phalloidin-based visualization of F-actin demonstrated that the TSPCs were stretched within COL I gel with classical spindle cell shapes; similar cell morphologies were also found in the BC hydrogel. The gene expression profile of TSPCs in the BC hydrogel was comparable with that in COL I gel. Moreover, the BC hydrogel supported capillary-like structure formation by human umbilical vein endothelial cells (HUVECs) in the hydrogel matrix. Taken together, these results suggest that the thermosensitive BC hydrogel holds great potential as an injectable cell delivery carrier of TSPCs for tendon tissue engineering.
Collapse
Affiliation(s)
- Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany. Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany. Institute of Orthopaedics, Key Laboratries of Regenerative Medicine in Orthopaedics and Musculoskeletal Trauma & War Injuries, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
2
|
Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater 2015; 48:100-124. [DOI: 10.1016/j.jmbbm.2015.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022]
|
3
|
Mauri A, Ehret AE, Perrini M, Maake C, Ochsenbein-Kölble N, Ehrbar M, Oyen ML, Mazza E. Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy. J Biomech 2015; 48:1606-13. [PMID: 25805698 DOI: 10.1016/j.jbiomech.2015.01.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 11/15/2022]
Abstract
Multiphoton microscopy has proven to be a versatile tool to analyze the three-dimensional microstructure of the fetal membrane and the mechanisms of deformation on the length scale of cells and the collagen network. In the present contribution, dedicated microscopic tools for in situ mechanical characterization of tissue under applied mechanical loads and the related methods for data interpretation are presented with emphasis on new stepwise monotonic uniaxial experiments. The resulting microscopic parameters are consistent with previous ones quantified for cyclic and relaxation tests, underlining the reliability of these techniques. The thickness reduction and the substantial alignment of collagen fiber bundles in the compact and fibroblast layer starting at very small loads are highlighted, which challenges the definition of a reference configuration in terms of a force threshold. The findings presented in this paper intend to inform the development of models towards a better understanding of fetal membrane deformation and failure, and thus of related problems in obstetrics and other clinical conditions.
Collapse
Affiliation(s)
- Arabella Mauri
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | - Alexander E Ehret
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Michela Perrini
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; Department of Obstetrics, University Hospital Zürich, 8091 Zurich, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, 8091 Zurich, Switzerland
| | - Michelle L Oyen
- Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; Swiss Federal Laboratories for Materials Science and Technology, EMPA, 8600 Dübendorf, Switzerland
| |
Collapse
|
4
|
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 2014; 5:2041731414557112. [PMID: 25610589 PMCID: PMC4883592 DOI: 10.1177/2041731414557112] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix–related cellular processes are also reviewed.
Collapse
Affiliation(s)
- Jaspreet K Kular
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK
| | - Shouvik Basu
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Ram I Sharma
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK ; Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
| |
Collapse
|
5
|
Szczesny SE, Edelstein RS, Elliott DM. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics. PLoS One 2014; 9:e99588. [PMID: 24915570 PMCID: PMC4051763 DOI: 10.1371/journal.pone.0099588] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF) is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml) may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml) increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml) on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.
Collapse
Affiliation(s)
- Spencer E. Szczesny
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel S. Edelstein
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
6
|
Han W, Heo SJ, Driscoll T, Boggs M, Duncan R, Mauck R, Elliott D. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur Cell Mater 2014; 27:321-31. [PMID: 24908425 PMCID: PMC4382367 DOI: 10.22203/ecm.v027a23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mechanical signals regulate a multitude of cell functions and ultimately govern fibrous tissue growth, maintenance and repair. Such mechanotransduction processes often involve modulation of intracellular calcium concentration ([Ca2+]i). However, most studies interrogate these responses in cells in simplified culture systems, thereby removing potentially important inputs from the native extracellular microenvironment. The objective of this study was to test the hypothesis that the intracellular calcium response of meniscus fibrochondrocytes (MFCs) is dependent on both the microenvironmental context in which this perturbation is applied and on the tensile deformation. Using a custom micro-mechanical tester mounted on a confocal microscope, intracellular calcium activity in MFCs in response to incremental tissue strains (0, 3, 6 and 9 %) was monitored in situ (i.e., in the native tissues) on MFC-seeded aligned scaffolds and MFC-seeded silicone membranes. The [Ca2+]i regulation by MFCs within the native meniscus tissue microenvironment was considerably different from [Ca2+]i regulation by MFCs on either aligned nanofibrous scaffolds or flat silicone membranes. Additionally, increasing levels of tensile deformation resulted in a greater number of responding cells, both in situ and in vitro, while having no effects on temporal characteristics of [Ca2+]i signalling. Collectively, these findings have significant implications for mechanobiology of load-bearing fibrous tissues and their responses to injury and degeneration. In addition, from a tissue engineering perspective, the findings establish cellular benchmarks for maturing engineered constructs, where native tissue-like calcium mechano-regulation may be an important outcome parameter to achieve mechanical functionality comparable to native tissue.
Collapse
Affiliation(s)
- W.M. Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S-J. Heo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.P. Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M.E. Boggs
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - R.L. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - R.L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D.M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA,Address for correspondence: Dawn M. Elliott, Biomedical Engineering, University of Delaware, 125 E. Delaware Ave., Newark, DE 19716, USA, Telephone Number: 1-302-831-1295,
| |
Collapse
|
7
|
Szczesny SE, Elliott DM. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon. Acta Biomater 2014; 10:2582-90. [PMID: 24530560 DOI: 10.1016/j.actbio.2014.01.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 12/15/2022]
Abstract
Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, PA 19104, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 125 East Delaware Avenue, Newark, DE 19716, USA.
| |
Collapse
|
8
|
Han WM, Heo SJ, Driscoll TP, Smith LJ, Mauck RL, Elliott DM. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys J 2014; 105:807-17. [PMID: 23931328 DOI: 10.1016/j.bpj.2013.06.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023] Open
Abstract
Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation.
Collapse
Affiliation(s)
- Woojin M Han
- Department of Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|