1
|
Turostowski M, Rendenbach C, Herzog P, Ellinghaus A, Prates Soares A, Heiland M, Duda GN, Schmidt-Bleek K, Fischer H. Titanium vs PEO Surface-Modified Magnesium Plate Fixation in a Mandible Bone Healing Model in Sheep. ACS Biomater Sci Eng 2024; 10:4901-4915. [PMID: 39072479 PMCID: PMC11322917 DOI: 10.1021/acsbiomaterials.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Titanium plates are the current gold standard for fracture fixation of the mandible. Magnesium alloys such as WE43 are suitable biodegradable alternatives due to their high biocompatibility and elasticity modulus close to those of cortical bone. By surface modification, the reagibility of magnesium and thus hydrogen gas accumulation per time are further reduced, bringing plate fixation with magnesium closer to clinical application. This study aimed to compare bone healing in a monocortical mandibular fracture model in sheep with a human-standard size, magnesium-based, plasma electrolytic-oxidation (PEO) surface modified miniplate fixation system following 4 and 12 weeks. Bone healing was analyzed using micro-computed tomography and histological analysis with Movat's pentachrome and Giemsa staining. For evaluation of the tissue's osteogenic activity, polychrome fluorescent labeling was performed, and vascularization was analyzed using immunohistochemical staining for alpha-smooth muscle actin. Bone density and bone mineralization did not differ significantly between titanium and magnesium (BV/TV: T1: 8.74 ± 2.30%, M1: 6.83 ± 2.89%, p = 0.589 and T2: 71.99 ± 3.13%, M2: 68.58 ± 3.74%, p = 0.394; MinB: T1: 26.16 ± 9.21%, M1: 22.15 ± 7.99%, p = 0.818 and T2: 77.56 ± 3.61%, M2: 79.06 ± 4.46%, p = 0.699). After 12 weeks, minor differences were observed regarding bone microstructure, osteogenic activity, and vascularization. There was significance with regard to bone microstructure (TrTh: T2: 0.08 ± 0.01 mm, M2: 0.06 ± 0.01 mm; p = 0.041). Nevertheless, these differences did not interfere with bone healing. In this study, adequate bone healing was observed in both groups. Only after 12 weeks were some differences detected with larger trabecular spacing and more vessel density in magnesium vs titanium plates. However, a longer observational time with full resorption of the implants should be targeted in future investigations.
Collapse
Affiliation(s)
- Marta Turostowski
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carsten Rendenbach
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Paulina Herzog
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Agnes Ellinghaus
- Julius
Wolff Institute, Berlin Institute of Health
at Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Ana Prates Soares
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
- Julius
Wolff Institute, Berlin Institute of Health
at Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Max Heiland
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Georg N. Duda
- Julius
Wolff Institute, Berlin Institute of Health
at Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Katharina Schmidt-Bleek
- Julius
Wolff Institute, Berlin Institute of Health
at Charité − Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Heilwig Fischer
- Department
of Oral and Maxillofacial Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
- Center
for Musculoskeletal Surgery, Charité
− Universitätsmedizin Berlin, Corporate Member of the
Freie Universität Berlin, Humboldt-Universität zu Berlin
and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
- BIH
Charité Clinician Scientist Program, Berlin Institute of Health at Charité − Universitätsmedizin
Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1 ,Berlin 10117, Germany
| |
Collapse
|
2
|
Mao Z, Yang M, Chen X, Shao J. An integrated computer-aided approach for parametric investigation of anatomic plate design. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1922094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Zhijian Mao
- Department of Information, School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, PR China
| | - Miao Yang
- Department of Information, School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, PR China
| | - Xiaozhong Chen
- Department of Information, School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, PR China
| | - Jiao Shao
- Department of Information, School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Peng MJQ, Xu H, Chen HY, Lin Z, Li X, Shen C, Lau Y, He E, Guo Y. Biomechanical analysis for five fixation techniques of Pauwels-III fracture by finite element modeling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105491. [PMID: 32388067 DOI: 10.1016/j.cmpb.2020.105491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES There are many fixation methods for Pauwels- III fracture, the most common implants are Locking Plate (LP), Dynamic Hip Screw (DHS), Multiple Lag Screw (MLS), and mixed fixture (DHS+MLS) implants, the common procedure is HemiArthroplasty (HA). However, how these fixtures biomechanically function is not clear. The aims of this study are to compare the mechanical behaviors of these five implants by finite element modeling and determinate the most suitable procedure for individuals with Pauwels- III fractures. METHODS We gathered 20 sets of femur images from CT scans in the *.dicom format first, and then processed them by using reverse engineering software programs, such as Mimics, Geomagic Studio, UG-8, Pro-Engineer and HyperMesh. Finally, we assembled and analyzed the five types of fixture models, the LP, DHS, MLS, DHS+LS and HA models, by AnSys. RESULTS These numerical models of Pauwels III fractures, including fixators and a simulative HA, were validated by a previous study and a cadaver test. Our analytical findings include the following: the displacements of all fixtures were between 0.3801 and 1.0834 mm, and the differences were not statistically significantly different; the resulting average peaks in stress were e(Ha) = 43.859 ≤ d(LP) = 60.435 ≤ b(MLS) = 68.678 < c(LS+DHS) = 98.478 < a(DHS) = 248.595 in Mpa, indicating that the stress of DHS and DHS+LS are greater than those of LP, HA and MLS, while the last 3 models were not significantly different. CONCLUSIONS To optimize the treatment for Pauwels III factures clinically, HA and LP should be proposed.
Collapse
Affiliation(s)
| | - HongWen Xu
- Pediatric Orthopedics Dept. of GuangZhou Women & Children's Medical Center, China
| | - Hai-Yan Chen
- Orthopedics Department of HuiDong People's Hospital, HuiDong, GuangDong, China
| | - Ze Lin
- Orthopedics Dept. of 1st Affiliated Hospital, GuangZhou Medical University, China
| | - XinXu Li
- Traumatic Orthopedics Dept. SanShui People's Hospital, FoShan, China
| | - ChuLong Shen
- Dept. of Orthopedics, FoShan Hospital of Traditional Chinese Medicine, China
| | - YongQiang Lau
- Dept. of Orthopedics, FoShan Hospital of Traditional Chinese Medicine, China
| | - ErXing He
- Orthopedics Dept. of 1st Affiliated Hospital, GuangZhou Medical University, China.
| | - YueMing Guo
- Dept. of Orthopedics, FoShan Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
4
|
Feng X, Qi W, Wang C, Leung F, Chen B. Effect of the screw tightening sequence on the stress distribution of a dynamic compression plate: A pilot finite element study. J Orthop Surg (Hong Kong) 2020; 27:2309499019876073. [PMID: 31554466 DOI: 10.1177/2309499019876073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Although the optimal screw tightening sequence is a common question orthopaedists encounter during fractures fixation with a dynamic compression plate (DCP), the effect of the screw tightening sequence on the stability of the plate has never been explored. This study explores the effect of the screw tightening sequence on the stress distribution of a DCP using a finite element method. METHODS Idealized finite element analysis models of the femoral diaphysis with six-hole or eight-hole DCPs were constructed. The screw tightening preload was simulated using 'bolt load' in ABAQUS. Two screw tightening sequences were studied for the six-hole plate and six sequences were studied for the eight-hole plate. U magnitude and Von Mises stress were used to evaluate the deformation and stress distribution of the plate, respectively. Deformation and stress distribution plots from different sequences were compared. RESULTS The different screw tightening sequences showed different deformation processes, while all had the same final deformation after all the screws were tightened. Each screw tightening step of different tightening sequences showed different stress distributions in the plate, while all had the same stress distribution after all the screws were tightened. CONCLUSION Using different screw tightening sequences to fix the same DCP can produce the same stability, which means in terms of fixation stability, after the two screws nearest to the fracture line are tightened, surgeons do not need to hesitate about the order in which the rest screws should be inserted during the surgery.
Collapse
Affiliation(s)
- Xiaoreng Feng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Weichen Qi
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chengyong Wang
- Institute of Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Bin Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Samsami S, Augat P, Rouhi G. Stability of femoral neck fracture fixation: A finite element analysis. Proc Inst Mech Eng H 2019; 233:892-900. [PMID: 31203740 DOI: 10.1177/0954411919856138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Femoral neck fractures represent a relatively uncommon injury in the non-elderly population often resulting from high-energy trauma. Clinical outcome in these patients can be improved by optimizing surgical procedures and selecting appropriate fixation methods. The aim of this study was to develop a numerical fracture model to investigate the influence of critical mechanical factors on the stability of fixation methods for femoral neck fractures. The mechanical stability of fracture fixation was assessed through employing finite element models and simulating progressive consolidation of the fracture for a vertical femoral neck fracture (i.e. Pauwels type III in which the angle between the fracture line and the horizontal plane is greater than 70°). Mechanical performance was compared among three different fixation methods (cannulated screws, dynamic hip screw with de-rotational screw, and proximal femoral locking plate). Axial femoral head displacement varied from 2.3 mm for cannulated screws to 1.12 mm for proximal femoral locking plate, although dynamic hip screw with de-rotational screw indicated a value of 0.94 mm. Considering a consolidated fracture and full weight-bearing load case, average displacements of fracture fragments were obtained of about 1.5, 3 and 70 µm for dynamic hip screw with de-rotational screw, proximal femoral locking plate and cannulated screws methods, respectively. In terms of interfragmentary movements at the fracture site, outcomes of this study demonstrated that, in agreement with our previous experimental research, the dynamic hip screw with de-rotational screw implant is a more effective choice than cannulated screws and proximal femoral locking plate techniques for vertical femoral neck fractures in young patients. Thus, one may conclude that the use of dynamic hip screw with de-rotational screw, particularly during the early stages of bone healing, could provide suitable mechanical environments that facilitate direct bone formation and shorter healing times.
Collapse
Affiliation(s)
- Shabnam Samsami
- 1 Institute for Biomechanics, Trauma Center Murnau, Murnau, Germany.,2 Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Peter Augat
- 1 Institute for Biomechanics, Trauma Center Murnau, Murnau, Germany.,3 Institute for Biomechanics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gholamreza Rouhi
- 4 Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Lee Y, Ogihara N, Lee T. Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater 2019; 97:312-320. [PMID: 31151004 DOI: 10.1016/j.jmbbm.2019.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
With increasing life expectancy and mortality rates, the burden of osteoporotic hip fractures is continually on an upward trend. In terms of prevention, there are several osteoporosis treatment strategies such as anti-resorptive drug treatments, which attempt to retard the rate of bone resorption, while promoting the rate of formation. With respect to prediction, several studies have provided insights into obtaining bone strength by non-invasive means through the application of FE analysis. However, what valuable information can we obtain from FE studies that have focused on osteoporosis research, with respect to the prediction of osteoporotic fractures? This paper aims to fine studies that have used FE analysis to predict fractures in the proximal femur through a systematic search of literature using PUBMED, with the main objective of supporting the diagnosis of osteoporosis. The focus of these FE studies is first discussed, and the methodological aspects are summarized, by mainly comparing and contrasting their meshing properties, material properties, and boundary conditions. The implications of these methodological differences in FE modelling processes and propositions with the aim of consolidating or minimalizing these differences are further discussed. We proved that studies need to start converging in terms of their input parameters to make the FE method applicable to clinical settings. This, in turn, will decrease the time needed for in vitro tests. Current advancements in FE analysis need to be consolidated before any further steps can be taken to implement engineering analysis into the clinical scenario.
Collapse
Affiliation(s)
- Yeokyeong Lee
- Department of Architectural Engineering, Ewha Womans University, Republic of Korea
| | | | - Taeyong Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Republic of Korea.
| |
Collapse
|
7
|
Chen X. Parametric design of patient-specific fixation plates for distal femur fractures. Proc Inst Mech Eng H 2018; 232:901-911. [DOI: 10.1177/0954411918793668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To facilitate the creation, modification, and optimization of patient-specific plates for distal femur fractures, a novel approach was proposed for the rapid and convenient design of patient-specific plates for patients’ fractured femurs using feature parameterization. First, several femur parameter values were obtained for a specific patient and used to construct a restored surface model of the fractured femur. Next, combined with the particular femur anatomy and the fracture, a parameterized plate with a suitable shape was created automatically based on the parameter maps between the femur and plate. Finally, using finite-element analysis, the Von Mises stresses of the plate under human gait loads were calculated to evaluate the biomechanical performance of the plate, and the plate was optimized for specific patients by recursively adjusting the parameter values. Case results indicate that patient-specific plate models can be created rapidly based on the fractured femur modes of patients and can be optimized efficiently with high-level semantic parameters. Therefore, the proposed approach may be used as a basic tool for the design and modification of patient-specific plates for use in orthopedic operations.
Collapse
Affiliation(s)
- Xiaozhong Chen
- School of Intelligent Equipment and Information Engineering, Changzhou Vocational Institute of Engineering, Changzhou, China
| |
Collapse
|
8
|
Gervais B, Vadean A, Raison M, Brochu M. Failure analysis of a 316L stainless steel femoral orthopedic implant. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.csefa.2015.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Samsami S, Saberi S, Sadighi S, Rouhi G. Comparison of Three Fixation Methods for Femoral Neck Fracture in Young Adults: Experimental and Numerical Investigations. J Med Biol Eng 2015; 35:566-579. [PMID: 26500470 PMCID: PMC4609309 DOI: 10.1007/s40846-015-0085-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
Abstract
Femoral neck fractures in young patients are usually caused by a high-energy trauma, which results in a perpendicular fracture. Although efforts are focused on preserving the femoral head in young patients, vertical femoral neck fracture is a problematic orthopedic injury due to the domination of shear forces. Due to controversy regarding which fixation method is the best choice, the purpose of this study was to find the most stable fixation method for this kind of fracture. This study includes experimental testing on cadaveric bone samples and finite element analysis (FEA) for three fracture fixation techniques, namely cannulated screws (CSs), dynamic hip screw with derotational screw (DHS + DS), and proximal femoral locking plate (PFLP). Experimental results of bone-implant stiffness, average femoral head displacement, failure load, failure energy, and relative position of the fractured fragments indicate that DHS + DS offers the strongest structure for stabilizing a vertical femoral neck fracture. Experimental data and FEA results both indicate that under static loading, the DHS + DS method of fixation produces the lowest femoral head displacement and interfragmentary movement, followed by PFLP and then CSs. The results of this research suggest that, based on the clinical assumption that a restricted weight-bearing regimen is recommended in the postoperative rehabilitation protocol, the DHS + DS method of fixation is a better choice compared to CSs and PFLP for a vertical femoral neck fracture fixation in young adults.
Collapse
Affiliation(s)
- Shabnam Samsami
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413 Iran
| | - Sadegh Saberi
- Department of Orthopaedy, Tehran University of Medical Sciences, Tehran, 14155-6447 Iran
| | - Sanambar Sadighi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, 14158-868 Iran
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413 Iran
| |
Collapse
|