1
|
Song Y, Gao J, Qi C, Liu D, Xiang H, Zhang M, Yang X, Zhang C. Identification of the periodontal ligament material parameters using response surface method. Med Eng Phys 2023; 114:103974. [PMID: 37030897 DOI: 10.1016/j.medengphy.2023.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The orthodontic treatment can be guided by the finite element (FE) simulation of periodontal ligament (PDL) mechanical properties, and the biomimetic degree of FE simulation can be primarily affected by the material properties of the PDL. According to the principle of parameter inverse, a method: response surface (RS) method and FE inverse method were proposed to identify the material parameters of PDL. The Prony series viscoelastic FE model was established based on the relaxation experiment. With root mean square error of simulation results and experimental results as the objective function, the optimal parameter combination was obtained by RS method, and the FE simulation result were compared with the experimental result. The result showed that the optimal parameters of the PDL were elastic modulus: 3.791 MPa, Poisson's ratio: 0.42, temperature: 29.294°C separately, and the simulation result of optimal combination maintained consistency with experiment with the correlation coefficient of 0.97258, indicating that the method proposed in this paper could well identify of PDL material parameters. The parameter identification method used in this paper can significantly improve the calculation efficiency, and reduce the parameter identification error compared with the simple FE inverse method, which has scientific significance and theoretical value.
Collapse
|
2
|
Dot G, Licha R, Goussard F, Sansalone V. A new protocol to accurately track long-term orthodontic tooth movement and support patient-specific numerical modeling. J Biomech 2021; 129:110760. [PMID: 34628204 DOI: 10.1016/j.jbiomech.2021.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Numerical simulation of long-term orthodontic tooth movement based on Finite Element Analysis (FEA) could help clinicians to plan more efficient and mechanically sound treatments. However, most of FEA studies assume idealized loading conditions and lack experimental calibration or validation. The goal of this paper is to propose a novel clinical protocol to accurately track orthodontic tooth displacement in three-dimensions (3D) and provide 3D models that may support FEA. Our protocol uses an initial cone beam computed tomography (CBCT) scan and several intra-oral scans (IOS) to generate 3D models of the maxillary bone and teeth ready for use in FEA. The protocol was applied to monitor the canine retraction of a patient during seven months. A second CBCT scan was performed at the end of the study for validation purposes. In order to ease FEA, a frictionless and statically determinate lingual device for maxillary canine retraction was designed. Numerical simulations were set up using the 3D models provided by our protocol to show the relevance of our proposal. Comparison of numerical and clinical results highlights the suitability of this protocol to support patient-specific FEA.
Collapse
Affiliation(s)
- Gauthier Dot
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France; Univ Gustave Eiffel, MSME, F-77474, Marne-la-Vallée, France; Service d'Odontologie, Hopital Pitie-Salpetriere, AP-HP, Universite de Paris, Paris, France
| | - Raphael Licha
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France; Univ Gustave Eiffel, MSME, F-77474, Marne-la-Vallée, France
| | - Florent Goussard
- CR2P, UMR 7207, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, 8 rue Buffon, CP38 75005, Paris, France
| | - Vittorio Sansalone
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France; Univ Gustave Eiffel, MSME, F-77474, Marne-la-Vallée, France.
| |
Collapse
|
3
|
Stress field and damage evolution in C/SiC woven composites: Image-based finite element analysis and in situ X-ray computed tomography tests. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Liu Y, Wu Y, Yang C, Song J, Fan Y. Biomechanical effects of corticotomy facilitated orthodontic anterior retraction: a 3-dimensional finite element analysis. Comput Methods Biomech Biomed Engin 2020; 23:295-302. [PMID: 31985276 DOI: 10.1080/10255842.2020.1719403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yang Liu
- College of Stomatology, Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yan Wu
- Department of orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chongshi Yang
- Department of orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jinlin Song
- Department of orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yubo Fan
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
5
|
DAO TIENTUAN, FAN ANGXIAO, DAKPÉ STÉPHANIE, POULETAUT PHILIPPE, RACHIK MOHAMED, HO BA THO MARIECHRISTINE. IMAGE-BASED SKELETAL MUSCLE COORDINATION: CASE STUDY ON A SUBJECT SPECIFIC FACIAL MIMIC SIMULATION. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Facial muscle coordination is a fundamental mechanism for facial mimics and expressions. The understanding of this complex mechanism leads to better diagnosis and treatment of facial disorders like facial palsy or disfigurement. The objective of this work was to use magnetic resonance imaging (MRI) technique to characterize the activation behavior of facial muscles and then simulate their coordination mechanism using a subject specific finite element model. MRI data of lower head of a healthy subject were acquired in neutral and in the pronunciation of the sound [o] positions. Then, a finite element model was derived directly from acquired MRI images in neutral position. Transversely-isotropic, hyperelastic, quasi-incompressible behavior law was implemented for modeling facial muscles. The simulation to produce the pronunciation of the sound [o] was performed by the cumulative coordination between three pairs of facial mimic muscles (Zygomaticus Major (ZM), Levator Labii Superioris (LLS), Levator Anguli Oris (LAO)). Mean displacement amplitude showed a good agreement with a relative deviation of 15% between numerical outcome and MRI-based measurement when all three muscles are involved. This study elucidates, for the first time, the facial muscle coordination using in vivo data leading to improve the model understanding and simulation outcomes.
Collapse
Affiliation(s)
- TIEN TUAN DAO
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France
| | - ANG-XIAO FAN
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France
| | - STÉPHANIE DAKPÉ
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France
| | - PHILIPPE POULETAUT
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France
| | - MOHAMED RACHIK
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7337 Roberval, Centre de recherche Royallieu - CS 60 319 - 60 203, Compiègne cedex, France
| | - MARIE CHRISTINE HO BA THO
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 Compiègne, France
| |
Collapse
|
6
|
Kim YK, Kameo Y, Tanaka S, Adachi T. Capturing microscopic features of bone remodeling into a macroscopic model based on biological rationales of bone adaptation. Biomech Model Mechanobiol 2017; 16:1697-1708. [DOI: 10.1007/s10237-017-0914-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
|