1
|
Jiang JH, Zhao CM, Zhang J, Xu RM, Chen L. Biomechanical effects of posterior lumbar interbody fusion with vertical placement of pedicle screws compared to traditional placement. World J Clin Cases 2024; 12:4108-4120. [PMID: 39015896 PMCID: PMC11235545 DOI: 10.12998/wjcc.v12.i20.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders. However, traditional screw placement methods require the dissection of paraspinal muscles and the insertion of pedicle screws at specific transverse section angles (TSA). Larger TSA angles require more force to pull the muscle tissue, which can increase the risk of surgical trauma and ischemic injury to the lumbar muscles. AIM To study the feasibility of zero-degree TSA vertical pedicle screw technique in the lumbosacral segment. METHODS Finite element models of vertebral bodies and pedicle screw-rod systems were established for the L4-S1 spinal segments. A standard axial load of 500 N and a rotational torque of 10 N/m were applied. Simulated screw pull-out experiment was conducted to observe pedicle screw resistance to pull-out, maximum stress, load-displacement ratio, maximum stress in vertebral bodies, load-displacement ratio in vertebral bodies, and the stress distribution in pedicle screws and vertebral bodies. Differences between the 0-degree and 17-degree TSA were compared. RESULTS At 0-degree TSA, the screw pull-out force decreased by 11.35% compared to that at 17-degree TSA (P < 0.05). At 0-degree and 17-degree TSA, the stress range in the screw-rod system was 335.1-657.5 MPa and 242.8-648.5 MPa, separately, which were below the fracture threshold for the screw-rod system (924 MPa). At 0-degree and 17-degree TSA, the stress range in the vertebral bodies was 68.45-78.91 MPa and 39.08-72.73 MPa, separately, which were below the typical bone yield stress range for vertebral bodies (110-125 MPa). At 0-degree TSA, the load-displacement ratio for the vertebral bodies and pedicle screws was slightly lower compared to that at 17-degree TSA, indicating slightly lower stability (P < 0.05). CONCLUSION The safety and stability of 0-degree TSA are slightly lower, but the risks of screw-rod system fracture, vertebral body fracture, and rupture are within acceptable limits.
Collapse
Affiliation(s)
- Ji-Hong Jiang
- Department of Orthopedic Surgery, Zhejiang University Mingzhou Hospital, Ningbo 315000, Zhejiang Province, China
| | - Chang-Ming Zhao
- Department of Orthopedic Surgery, Zhejiang University Mingzhou Hospital, Ningbo 315000, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, Zhejiang University Mingzhou Hospital, Ningbo 315000, Zhejiang Province, China
| | - Rong-Ming Xu
- Department of Orthopedic Surgery, Zhejiang University Mingzhou Hospital, Ningbo 315000, Zhejiang Province, China
| | - Lei Chen
- Department of Orthopedic Surgery, Zhejiang University Mingzhou Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
2
|
Zhan X, Gao F, Yang Y, Tsai T, Wan Z, Yu Y. Effect of Insertional Direction of Pedicle Screw on Screw Loosening: A Biomechanical Study on Synthetic Bone Vertebra under a Physiology-like Load. Orthop Surg 2024; 16:1461-1472. [PMID: 38714346 PMCID: PMC11144517 DOI: 10.1111/os.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024] Open
Abstract
OBJECTIVES It is now understood that pedicle screw loosening at the implant-bone interface can lead to poor screw-bone interface purchase and decreased fixation stability. Previous biomechanical tests used cadaveric vertebrae and pull-out or torque loads to assess the effect of the insertional direction of pedicle screws on screw loosening. However, these tests faced challenges in matching biomechanical differences among specimens and simulating in vivo loads applied on pedicle screws. This study aimed to evaluate the effect of the insertional direction of pedicle screws on screw loosening using tension-compression-bending loads and synthetic bone vertebrae. METHODS Polyaxial pedicle screws were inserted into nine synthetic bone vertebrae in three directions (three samples per group): cranial, parallel, and caudad (-10°, 0°, +10° of the pedicle screw rod to the upper plane of the vertebra, respectively). Pedicle screws in the vertebrae were loaded using a polyethylene block connected to a material testing machine. Tension-compression-bending loads (100N-250N) with 30,000 cycles were applied to the pedicle screws, and displacements were recorded and then cycle-displacement curve was drawn based on cycle number. Micro-CT scans were performed on the vertebrae after removing the pedicle screws to obtain images of the screw hole, and the screw hole volume was measured using imaging analysis software. Direct comparison of displacements was conducted via cycle-displacement curve. Screw hole volume was analyzed using analysis of variance. The correlation between the displacement, screw hole volume and the direction of pedicle screw was assessed by Spearman correlation analysis. RESULTS The smallest displacements were observed in the caudad group, followed by the parallel and cranial groups. The caudad group had the smallest screw hole volume (p < 0.001 and p = 0.009 compared to the cranial and parallel groups, respectively), while the volume in the parallel group was greater than that in the cranial group (p = 0.003). Correlation analysis revealed that the insertional direction of the pedicle screw was associated with the displacement (p = -0.949, p < 0.001) and screw hole volume (p = -0.944, p < 0.001). CONCLUSION Strong correlations were found between the insertional direction of the pedicle screw and relevant parameters, including displacement and screw hole volume. Pedicle screw insertion in the caudad direction resulted in the least pedicle screw loosening.
Collapse
Affiliation(s)
- Xuqiang Zhan
- Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Feng Gao
- Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Yuyao Maternity and Child Health Care Hospital (Yuyao Second People's Hospital)ZhejiangChina
| | - Yangyang Yang
- School of Biomedical Engineering & Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tsung‐Yuan Tsai
- School of Biomedical Engineering & Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zongmiao Wan
- The First Affiliated Hospital of NanChang UniversityNanchangChina
| | - Yan Yu
- Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Spine SurgeryTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
3
|
Wang K, Wang X, Li Z, Xie T, Wang L, Luo C, Huang S, Zeng J. The Influence of Screw Positioning on Cage Subsidence in Patients with Oblique Lumbar Interbody Fusion Combined with Anterolateral Fixation. Orthop Surg 2023; 15:3263-3271. [PMID: 37771126 PMCID: PMC10694007 DOI: 10.1111/os.13882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES Cage subsidence (CS) has been reported to be one of the most common complications following oblique lumbar interbody fusion (OLIF). To reduce the incidence of CS and improve intervertebral fusion rates, anterolateral fixation (AF) has been gradually proposed. However, the incidence of CS in patients with oblique lumbar interbody fusion combined with anterolateral fixation (OLIF-AF) is still controversial. Additionally, there is a lack of consensus regarding the optimal placement of screws for OLIF-AF, and the impact of screw placement on the incidence of CS has yet to be thoroughly investigated and validated. The objective of this investigation was to examine the correlation between screw placements and CS and to establish an optimized approach for implantation in OLIF-AF. METHODS A retrospective cohort study was undertaken. From October 2017 to December 2020, a total of 103 patients who received L4/5 OLIF-AF for lumbar spinal stenosis or spondylolisthesis or degenerative instability in our department were followed up for more than 12 months. Demographic and radiographic data of these patients were collected. Additionally, screw placement related parameters, including trajectory and position, were measured by anterior-posterior X-ray and axial CT. Analysis was done by chi-square, independent t-test, univariable and multivariable binary logistic regression to explore the correlation between screw placements and CS. Finally, the receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive ability of screw placement-related parameters. RESULTS A total of 103 patients were included, and CS was found in 28 (27.18%) patients. Univariable analysis was firstly performed for each parameter. Next, variables with p-value of <0.05, including bone mineral density (BMD), concave morphology, and screw placement-related parameters were included in the multivariate logistic regression analysis. Significant predictor factors for subsidence were coronal plane angle (CPA) (OR 0.580 ± 0.208, 95% CI 1.187-2.684), implantation point (IP) (L4) (OR 5.732 ± 2.737, 95% CI 1.445-12.166), and IP (L5) (OR 7.160 ± 3.480, 95% CI 1.405-28.683). Furthermore, ROC curves showed that the predictive accuracy of CS was 88.1% for CPA, 77.6% for IP (L4) and 80.9% for IP (L5). CONCLUSIONS We demonstrate that the trajectory of vertebral screws, including angle and position, was closely related to CS. Inserting screws parallel to each other and as close to the endplate as possible while keeping the cage inside the range of the superior and inferior screws are an optimal implantation strategy for OLIF-AF.
Collapse
Affiliation(s)
- Kai Wang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Xiandi Wang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Zhuhai Li
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
- Department of Spine SurgeryThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tianhang Xie
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Lihang Wang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
- Department of Spine SurgeryGuizhou Provincial Orthopedics HospitalGuiyangChina
| | - Chuan Luo
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
- School of Mechanical EngineeringSichuan UniversityChengduChina
| | - Shishu Huang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Jiancheng Zeng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Biswas JK, Mondal N, Choudhury S, Malas A, Rana M. A finite element study and mathematical modeling of lumbar pedicle screw along with various design parameters. J Orthop Sci 2023; 28:992-1003. [PMID: 36175251 DOI: 10.1016/j.jos.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Lumbar pedicle screw is one of the most common and important elements in the field of lumbar surgery. It plays a great role in rectifying the spinal alignment and stabilization providing strength and stability to the affected area of spine. In spinal surgery, minimally invasive techniques and minor incisions are made which makes it less painful for the patients than the traditional methods. Moreover, the screws are not needed to be removed after the surgery which is yet another great advantage of the pedicle screw. METHOD In this study, 3D Finite Element (FE) model of human L4 vertebrae is taken for analysis using image processing tool. Pedicle screw design with varying mechanical and geometrical properties has been carried out at different applied loads on it along with considering the effect of frictional forces between all contact surfaces. RESULT Mathematical relationship among stress, strain, pitch of the screw and diameter have been developed for different thread profiles which will be beneficial for researchers for further development of pedicle screw implants. CONCLUSION Results from the different analysis shows that bending stress on the screw for different loads at triangular pitch is higher than the trapezoidal. Hence, trapezoidal thread is efficacious than triangular thread. In case of vertebral bone, the magnitude of stress is less for trapezoidal screw than triangular and stress has a linear relationship with pitch length. In term of strain, triangular thread develops more strain than trapezoidal thread. A set of mathematical relation has been developed for different thread profile based on pitch length, stress and strain which gives the idea about von Mises stress and strain.
Collapse
Affiliation(s)
- Jayanta Kumar Biswas
- Department of Mechanical Engineering, National Institute of Technology, Patna, Bihar - 800005, India
| | - Nitesh Mondal
- Department of Mechanical Engineering, Ghani Khan Choudhury Institute of Engineering & Technology, Narayanpur, Malda - 732141, India
| | - Sandeep Choudhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India
| | - Anindya Malas
- Department of Mechanical Engineering, National Institute of Technology, Patna, Bihar - 800005, India
| | - Masud Rana
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India.
| |
Collapse
|
5
|
Barrera CS, Villemure I, Aubin CÉ. A Novel Methodology to Estimate Bone Mechanical Properties Using Dual-Energy Imaging to Improve Pedicle Screw Fixation. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:316-327. [PMID: 37654217 PMCID: PMC10483819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To develop a methodology to improve the representation of the mechanical properties of a vertebral finite element model (FEM) based on a new dual-energy (DE) imaging technology to improve pedicle screw fixation. METHODS Bone-calibrated radiographs were generated with dual-energy imaging technology in order to estimate the mechanical properties of the trabecular bone. Properties were included in regions of interest in four vertebral FEMs representing heterogeneity and homogeneity, as a realistic and reference model, respectively. Biomechanical parameters were measured during screw pull-out testing to evaluate pedicle screw fixation. RESULTS Simulations with property distributions deduced from dual-energy imaging characterization (heterogeneous models) induced an increase in biomechanical indicators versus with a homogeneous representation, implying different behaviors for the subject-specific models. CONCLUSION The presented methodology allows a patient-specific representation of bone quality in a FEM using new DE imaging technology. Consideration of individualized bone distribution in a spinal FEM improves the perspective of orthopedic surgical planning over otherwise underestimated results using a homogeneous representation.
Collapse
Affiliation(s)
- Carolina Solorzano Barrera
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada
- Research Center, Sainte-Justine University Hospital Center, Montréal, Canada
| | - Isabelle Villemure
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada
- Research Center, Sainte-Justine University Hospital Center, Montréal, Canada
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Carl-Éric Aubin
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada
- Research Center, Sainte-Justine University Hospital Center, Montréal, Canada
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, Canada
| |
Collapse
|
6
|
Huang Y, Maimaiti A, Tian Y, Li Z, Kahaer A, Rexiti P. Biomechanical investigation of the hybrid lumbar fixation technique with traditional and cortical bone trajectories in transforaminal lumbar interbody fusion: finite element analysis. J Orthop Surg Res 2023; 18:549. [PMID: 37525283 PMCID: PMC10388474 DOI: 10.1186/s13018-023-04027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE To compare the biomechanical performance of the hybrid lumbar fixation technique with the traditional and cortical bone trajectory techniques using the finite element method. METHODS Four adult wet lumbar spine specimens were provided by the Department of Anatomy and Research of Xinjiang Medical University, and four L1-S1 lumbar spine with transforaminal lumbar interbody fusion (TLIF) models at L4-L5 segment and four different fixation techniques were established: bilateral traditional trajectory screw fixation (TT-TT), bilateral cortical bone trajectory screw fixation (CBT-CBT), hybrid CBT-TT (CBT screws at L4 and TT screws at L5) and TT-CBT (TT screws at L4 and CBT screws at L5). The range of motion (ROM) of the L4-L5 segment, von Mises stress of cage, internal fixation, and rod were compared in flexion, extension, left and right bending, and left and right rotation. RESULTS Compared with the TT-TT group, the TT-CBT group exhibited lower ROM of L4-L5 segment, especially in left-sided bending; the CBT-TT group had the lowest ROM of L4-L5 segment in flexion and extension among the four fixation methods. Compared with the CBT-CBT group, the peak cage stress in the TT-CBT group was reduced by 9.9%, 18.1%, 21.5%, 23.3%, and 26.1% in flexion, left bending, right bending, left rotation, and right rotation conditions, respectively, but not statistically significant (P > 0.05). The peak stress of the internal fixation system in the TT-CBT group was significantly lower than the other three fixation methods in all five conditions except for extension, with a statistically significant difference between the CBT-TT and TT-CBT groups in the left rotation condition (P = 0.017). In addition, compared with the CBT-CBT group, the peak stress of the rod in the CBT-TT group decreased by 34.8%, 32.1%, 28.2%, 29.3%, and 43.0% under the six working conditions of flexion, extension, left bending, left rotation, and right rotation, respectively, but not statistically significant (P > 0.05). CONCLUSIONS Compared with the TT-TT and CBT-CBT fixation methods in TLIF, the hybrid lumbar fixation CBT-TT and TT-CBT techniques increase the biomechanical stability of the internal fixation structure of the lumbar fusion segment to a certain extent and provide a corresponding theoretical basis for further development in the clinic.
Collapse
Affiliation(s)
- Ying Huang
- Xinjiang Medical University, Urumqi, China
| | - Abulikemu Maimaiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | - Alafate Kahaer
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paerhati Rexiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Urumqi, China.
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, China.
| |
Collapse
|
7
|
Kahaer A, Zhang R, Wang Y, Luan H, Maimaiti A, Liu D, Shi W, Zhang T, Guo H, Rexiti P. Hybrid pedicle screw and modified cortical bone trajectory technique in transforaminal lumbar interbody fusion at L4-L5 segment: finite element analysis. BMC Musculoskelet Disord 2023; 24:288. [PMID: 37055739 PMCID: PMC10099636 DOI: 10.1186/s12891-023-06385-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Investigate the biomechanical properties of the hybrid fixation technique with bilateral pedicle screw (BPS) and bilateral modified cortical bone trajectory screw (BMCS) in L4-L5 transforaminal lumbar interbody fusion (TLIF). METHODS Three finite element (FE) models of the L1-S1 lumbar spine were established according to the three human cadaveric lumbar specimens. BPS-BMCS (BPS at L4 and BMCS at L5), BMCS-BPS (BMCS at L4 and BPS at L5), BPS-BPS (BPS at L4 and L5), and BMCS-BMCS (BMCS at L4 and L5) were implanted into the L4-L5 segment of each FE model. The range of motion (ROM) of the L4-L5 segment, von Mises stress of the fixation, intervertebral cage, and rod were compared under a 400-N compressive load with 7.5 Nm moments in flexion, extension, bending, and rotation. RESULTS BPS-BMCS technique has the lowest ROM in extension and rotation, and BMCS-BMCS technique has the lowest ROM in flexion and lateral bending. The BMCS-BMCS technique showed maximal cage stress in flexion and lateral bending, and the BPS-BPS technique in extension and rotation. Compared to the BPS-BPS and BMCS-BMCS technique, BPS-BMCS technique presented a lower risk of screw breakage and BMCS-BPS technique presented a lower risk of rod breakage. CONCLUSION The results of this study support that the use of the BPS-BMCS and BMCS-BPS techniques in TLIF surgery for offering the superior stability and a lower risk of cage subsidence and instrument-related complication.
Collapse
Affiliation(s)
- Alafate Kahaer
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Rui Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Yixi Wang
- First Clinical Medical Institution, Xinjiang Medical University, Urumqi, China
| | - Haopeng Luan
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Abulikemu Maimaiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Dongshan Liu
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Wenjie Shi
- First Clinical Medical Institution, Xinjiang Medical University, Urumqi, China
| | - Tao Zhang
- Digital Orthopaedic Center of Xinjiang Medical University, Urumqi, China
| | - Hailong Guo
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China
| | - Paerhati Rexiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, China.
| |
Collapse
|
8
|
Yang S, Sun T, Zhang L, Cong M, Guo A, Liu D, Song M. Stress Distribution of Different Pedicle Screw Insertion Techniques Following Single-Segment TLIF: A Finite Element Analysis Study. Orthop Surg 2023; 15:1153-1164. [PMID: 36855914 PMCID: PMC10102325 DOI: 10.1111/os.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVES At present, a variety of posterior lumbar internal fixation implantation methods have been developed, which makes it difficult for spine surgeons to choose. The stress distribution of the internal fixation system is one of the important indexes to evaluate these technologies. Common insertion technologies include Roy Camille, Magerl, Krag, AO, and Weinstein insertion techniques. This study aimed to compare the distribution of von Mises stresses in different screw fixation systems established by these insertion technologies. METHODS Here, the three-dimensional finite element (FE) method was selected to evaluate the postoperative stress distribution of internal fixation. Following different pedicle screw insertion techniques, five single-segment transforaminal lumbar interbody fusion (TLIF) models were established after modeling and validation of the L1-S1 vertebrae FE model. RESULTS By analyzing the data, we found that stress concentration phenomenon was in all the models. Additionally, Roy-Camille, Krag, AO, and Weinstein insertion techniques led to the great stress on lumbar vertebra, intervertebral disc, and screw-rod fixation systems. Therefore, we hope that the results can provide ideas for clinical work and development of pedicle screws in the future. It is worth noting that flexion, unaffected side lateral bending, and affected side axial rotation should be limited for the patients with cages implanted. CONCLUSIONS Overall, our method obtained the results that Magerl insertion technique was the relatively safe approach for pedicle screw implantation due to its relatively dispersive stress in TLIF models.
Collapse
Affiliation(s)
- Simengge Yang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tianze Sun
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liwen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Menglin Cong
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Anyun Guo
- Department of Joint Trauma, General Hospital of Shenzhen University, Shenzhen, China
| | - Dakai Liu
- Department of Orthopaedics, The Second People's Hospital of Dalian, Dalian, China
| | - Mingzhi Song
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Orthopaedics, The Third Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Tai CL, Chen WP, Liu MY, Li YD, Tsai TT, Lai PL, Hsieh MK. Biomechanical comparison of pedicle screw fixation strength among three different screw trajectories using single vertebrae and one-level functional spinal unit. Front Bioeng Biotechnol 2022; 10:1054738. [PMID: 36568298 PMCID: PMC9780459 DOI: 10.3389/fbioe.2022.1054738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Three key factors are responsible for the biomechanical performance of pedicle screw fixation: screw mechanical characteristics, bone quality and insertion techniques. To the best of the authors' knowledge, no study has directly compared the biomechanical performance among three trajectories, i.e., the traditional trajectory (TT), modified trajectory (MT) and cortical bone trajectory (CBT), in a porcine model. This study compared the pullout strength and insertion torque of three trajectory methods in single vertebrae, the pullout strength and fixation stiffness including flexion, extension, and lateral bending in a one-level instrumented functional spinal unit (FSU) that mimics the in vivo configuration were clarified. A total of 18 single vertebrae and 18 FSUs were randomly assigned into three screw insertion methods (n = 6 in each trajectory group). In the TT group, the screw converged from its entry point, passed completely inside the pedicle, was parallel to the superior endplate, was located in the superior third of the vertebral body and reached to at least the anterior third of the vertebral body. In the MT group, the convergent angle was similar to that of the TT method but directed caudally to the anterior inferior margin of the vertebral body. The results of insertion torque and pullout strength in single vertebrae were analyzed; in addition, the stiffness and pullout strength in the one-level FSU were also investigated. This study demonstrated that, in single vertebrae, the insertion torque was significantly higher in CBT groups than in TT and MT groups (p < 0.05). The maximal pullout strength was significantly higher in MT groups than in TT and CBT groups (p < 0.05). There was no significant difference in stiffness in the three motions among all groups. The maximal pullout strength in FSUs of MT and CBT groups were significantly higher than the TT groups (p < 0.05). We concluded that either MT or CBT provides better biomechanical performance than TT in single vertebrae or FSUs. The lack of significance of stiffness in FSUs among three methods suggested that MT or CBT could be a reasonable alternative to TT if the traditional trajectory was not feasible.
Collapse
Affiliation(s)
- Ching-Lung Tai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Mu-Yi Liu
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Da Li
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan,*Correspondence: Ming-Kai Hsieh,
| |
Collapse
|
10
|
Wang Q, Gao Z, Guo K, Wang F, Wu D. Effect of sagittal screw angle and distance of screw apex to superior endplate on adjacent segment disease after posterolateral lumbar fusion: a retrospective study. J Orthop Surg Res 2022; 17:486. [DOI: 10.1186/s13018-022-03383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Numerous complications of lumbar fusion surgery have been reported, with adjacent segment disease (ASD) being one of the most important. Few studies describe the effect of sagittal, horizontal screw angles and distance of pedicle screw apex to superior endplate on the incidence of ASD in lumbar spine. The purpose of this retrospective study is to evaluate the hypothesis that unsatisfactory pedicle screw insertion positions would increase the likelihood of ASD.
Methods
Outpatients with lumbar spinal stenosis underwent posterolateral lumbar fusion at L4-S1 with a least 2-year follow-up were studied. ASD at L3–L4 was defined as a condition in which intervertebral disk narrowing, posterior vertebral opening, and vertebral slippage progress at the last follow-up in comparison with the postoperative. Independent t test was performed to compare data between two groups; Spearman analysis was performed to analyze the relationship between two continuous variables. Multivariate binary logistic models were performed to identify the independent risk factors of ASD. The receiver operating characteristic (ROC) curve was performed to measure model discrimination and Hosmer–Lemeshow (H–L) test was used to measure calibration. ROC curve evaluated the discrimination ability of sagittal screw angle and distance in predicting incidence of ASD.
Results
Patients in ASD group exhibit higher incidence of osteoporosis, higher Visual analogue scale (VAS), Oswestry disability index (ODI), bigger sagittal screw angle, shorter distance of pedicle screw apex to superior endplate than those in non-ASD group (p < 0.05). VAS, ODI at the last follow-up were positively correlated with Pfirrmann grade of L3–4 disk and sagittal screw angle, while negatively correlated with distance of screw apex to superior endplate (p < 0.05). Multivariate binary logistic model indicated that follow-up time (odds ratio [OR] 1.637, 95% confidence interval [CI] 1.186–2.260), distance of screw apex to superior endplate (OR 0.150, 95% CI 0.067–0.336), sagittal screw angle (OR 2.404, 95% CI 1.608–3.594) were statistically significant. The models showed great discrimination and calibration. The area under the curve of ASD identified by sagittal angle and distance was 0.895 and the cut-off values were 5.500° and 6.250 mm, respectively.
Conclusion
Sagittal screw angle and distance of screw apex to superior endplate were significantly associated with the risk of ASD.
Collapse
|
11
|
NAITO K, NAKANISHI Y, TAKAMI T. Cervical Lift-up Basket Laminoplasty after Resection of Spinal Intramedullary Tumors: A Finite Element Analysis and Clinical Image Evaluation. Neurol Med Chir (Tokyo) 2022; 62:559-565. [PMID: 36184479 PMCID: PMC9831624 DOI: 10.2176/jns-nmc.2022-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although reconstructive laminoplasty is commonly performed after resection of spinal intramedullary tumors of the cervical spine, its biomechanical rigidity of laminoplasty framework remains unclear. The objective of this study was to examine the structural reliability of our unique method of cervical lift-up basket laminoplasty by using computed tomography (CT)-based finite element analysis (FEA) and clinical radiological evaluation. A finite element model of cervical laminoplasty was created based on CT images using FEA software. Cervical lift-up basket laminoplasty (Basket) was compared with the standard style of open-door basket laminoplasty (Open-door). Clinical subjects for radiological evaluation comprised 33 patients who underwent cervical lift-up basket laminoplasty after resection of spinal intramedullary tumors. An FEA-equivalent stress histogram showed that stress was moderately dispersed around the basket. Virtual displacement of the spinous process of the Basket model was equivalent to that of the Open-door model in any direction of posterior-to-anterior, right-to-left, or top-to-bottom force. In the clinical analysis, radiological data with a minimum postoperative period of 6 months were obtained in a total of 28 out of 33 patients. No patients underwent revision surgery because of implant-related complications. No significant differences in C2-C7 angle or cervical tilt angle were observed between pre- and postoperatively. The structural rigidity of cervical lift-up basket laminoplasty was equivalent to the open-door style on the FEA. Clinical radiological evaluation suggested that there were no serious adverse events associated with cervical laminoplasty, although the longer postoperative follow-up is mandatory.
Collapse
Affiliation(s)
- Kentaro NAITO
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Yuta NAKANISHI
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Osaka, Japan
| | - Toshihiro TAKAMI
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
12
|
López I, Echeverry-Mejía J, Ortiz JG, Juha M. Selection methodology of femoral stems under fatigue loading conditions. Comput Methods Biomech Biomed Engin 2022:1-10. [PMID: 36106657 DOI: 10.1080/10255842.2022.2112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The endurance properties of a femoral stem under fatigue loading must be known and the methodology proposed in this work provides the mathematical tools for designers of femoral stems and orthopedic surgeons to select the adequate material and femoral stem design with a new graph that condensate the information in an easy to use selection process. Initially, the theoretical and computational development of the fatigue analysis provides comparable results with an average error of 8.3%. And the formulated methodology with the aim of selecting the mechanical device with the best fatigue performance with an average error of 8.7%.
Collapse
Affiliation(s)
- Iván López
- Doctorado en ingeniería, Facultad de Ingeniería, Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Human Centered Design (HCD) research group, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | | | | | - Mario Juha
- Energy, Materials and Environment (GEMA) research group, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| |
Collapse
|
13
|
Huang ZB, Nie MD, Zhang NZ, Liu S, Yuan JB, Lin XM, Cheng CK, Shi ZC, Mao NF. Biomechanical evaluation of a short-rod technique for lumbar fixation surgery. Front Bioeng Biotechnol 2022; 10:959210. [PMID: 36032712 PMCID: PMC9403742 DOI: 10.3389/fbioe.2022.959210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to analyze the stability and instrument-related complications associated with fixation of the lumbar spine using the Short-Rod (SR) technique. Methods: Using finite element analysis, this study assessed the stability of a bilateral lumbar fixation system when inserting the pedicle screws at angles of 10°, 15°, and 20° to the endplate in the sagittal plane. Using the most stable construct with a screw angle, the model was then assessed with different rod lengths of 25, 30, 35, and 45 mm. The optimal screw inclination angle and rod length were incorporated into the SR model and compared against traditional parallel screw insertion (pedicle screws in parallel to the endplate, PPS) in terms of the stability and risk of instrument-related complications. The following parameters were evaluated using the validated L4–L5 lumbar finite element model: axial stiffness, range of motion (ROM), stress on the endplate and facet joint, von-Mises stress on the contact surface between the screw and rod (CSSR), and screw displacement. Results: The results showed that the SR model with a 15° screw inclination angle and 35 mm rod length was superior in terms of construct stability and risk of complications. Compared to the PPS model, the SR model had lower stiffness, lower ROM, less screw displacement, and lower stress on the facet cartilage, the CSSR, and screws. However, the SR model also suffered more stress on the endplate in flexion and lateral bending. Conclusion: The SR technique with a 15° screw inclination and 35 mm rod length offers good lumbar stability with a low risk of instrument-related complications.
Collapse
Affiliation(s)
- Ze-Bin Huang
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mao-Dan Nie
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Ze Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shu Liu
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jia-Bin Yuan
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xu-Miao Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cheng-Kung Cheng, ; Zhi-Cai Shi, ; Ning-Fang Mao,
| | - Zhi-Cai Shi
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Cheng-Kung Cheng, ; Zhi-Cai Shi, ; Ning-Fang Mao,
| | - Ning-Fang Mao
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Cheng-Kung Cheng, ; Zhi-Cai Shi, ; Ning-Fang Mao,
| |
Collapse
|
14
|
Zhu G, Wu Z, Fang Z, Zhang P, He J, Yu X, Ge Z, Tang K, Liang D, Jiang X, Liang Z, Cui J. Effect of the In Situ Screw Implantation Region and Angle on the Stability of Lateral Lumbar Interbody Fusion: A Finite Element Study. Orthop Surg 2022; 14:1506-1517. [PMID: 35656700 PMCID: PMC9251290 DOI: 10.1111/os.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To investigate the effect of the in situ screw implantation region and angle on the stability of lateral lumbar interbody fusion (LLIF) from a biomechanical perspective. Methods A validated L2‐4 finite element (FE) model was modified for simulation. The L3‐4 fused segment undergoing LLIF surgery was modeled. The area between the superior and inferior edges and the anterior and posterior edges of the vertebral body (VB) is divided into four zones by three parallel lines in coronal and horizontal planes. In situ screw implantation methods with different angles based on the three parallel lines in coronal plane were applied in Models A, B, and C (A: parallel to inferior line; B: from inferior line to midline; C: from inferior line to superior line). In addition, four implantation methods with different regions based on the three parallel lines in horizontal plane were simulated as types 1–2, 1–3, 2–2, and 2–3 (1–2: from anterior line to midline; 1–3: from anterior line to posterior line; 2–2: parallel to midline; 2–3: from midline to posterior line). L3‐4 ROM, interbody cage stress, screw‐bone interface stress, and L4 superior endplate stress were tracked and calculated for comparisons among these models. Results The L3‐4 ROM of Models A, B, and C decreased with the extent ranging from 47.9% (flexion‐extension) to 62.4% (lateral bending) with no significant differences under any loading condition. Types 2–2 and 2–3 had 45% restriction, while types 1–2 and 1–3 had 51% restriction in ROM under flexion‐extension conditions. Under lateral bending, types 2–2 and 2–3 had 70.6% restriction, while types 1–2 and 1–3 had 61.2% restriction in ROM. Under axial rotation, types 2–2 and 2–3 had 65.2% restriction, while types 1–2 and 1–3 had 59.3% restriction in ROM. The stress of the cage in types 2–2 and 2–3 was approximately 20% lower than that in types 1–2 and 1–3 under all loading conditions in all models. The peak stresses at the screw‐bone interface in types 2–2 and 2–3 were much lower (approximately 35%) than those in types 1–2 and 1–3 under lateral bending, while no significant differences were observed under flexion‐extension and axial rotation. The peak stress on the L4 superior endplate was approximately 30 MPa and was not significantly different in all models under any loading condition. Conclusions Different regions of entry‐exit screws induced multiple screw trajectories and influenced the stability and mechanical responses. However, different implantation angles did not. Considering the difficulty of implantation, the ipsilateral‐contralateral trajectory in the lateral middle region of the VB can be optimal for in situ screw implantation in LLIF surgery.
Collapse
Affiliation(s)
- Guangye Zhu
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihua Wu
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhichao Fang
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Department of Spinal Surgery, 1st Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhilin Ge
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, 1st Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, 1st Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyang Liang
- 1st Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianchao Cui
- Department of Spinal Surgery, 1st Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Fasser MR, Gerber G, Passaplan C, Cornaz F, Snedeker JG, Farshad M, Widmer J. Computational model predicts risk of spinal screw loosening in patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2639-2649. [PMID: 35461383 DOI: 10.1007/s00586-022-07187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/15/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Pedicle screw loosening is a frequent complication in lumbar spine fixation, most commonly among patients with poor bone quality. Determining patients at high risk for insufficient implant stability would allow clinicians to adapt the treatment accordingly. The aim of this study was to develop a computational model for quantitative and reliable assessment of the risk of screw loosening. METHODS A cohort of patient vertebrae with diagnosed screw loosening was juxtaposed to a control group with stable fusion. Imaging data from the two cohorts were used to generate patient-specific biomechanical models of lumbar instrumented vertebral bodies. Single-level finite element models loading the screw in axial or caudo-cranial direction were generated. Further, multi-level models incorporating individualized joint loading were created. RESULTS The simulation results indicate that there is no association between screw pull-out strength and the manifestation of implant loosening (p = 0.8). For patient models incorporating multiple instrumented vertebrae, CT-values and stress in the bone were significantly different between loose screws and non-loose screws (p = 0.017 and p = 0.029, for CT-values and stress, respectively). However, very high distinction (p = 0.001) and predictability (R2Pseudo = 0.358, AUC = 0.85) were achieved when considering the relationship between local bone strength and the predicted stress (loading factor). Screws surrounded by bone with a loading factor higher than 25% were likely to be loose, while the chances of screw loosening were close to 0 with a loading factor below 15%. CONCLUSION The use of a biomechanics-based score for risk assessment of implant fixation failure might represent a paradigm shift in addressing screw loosening after spondylodesis surgery.
Collapse
Affiliation(s)
- Marie-Rosa Fasser
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Spine Biomechanics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Caroline Passaplan
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Frédéric Cornaz
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jonas Widmer
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland. .,Spine Biomechanics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Xu C, Huang C, Cai P, Fang Z, Wei Z, Liu F, Li J, Liu Y. Biomechanical Effects of Pedicle Screw Positioning on the Surgical Segment in Models After Oblique Lumbar Interbody Fusion: An in-silico Study. Int J Gen Med 2022; 15:1047-1056. [PMID: 35140507 PMCID: PMC8818966 DOI: 10.2147/ijgm.s352304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bilateral pedicle screw (BPS) is the “gold standard” of fixation methods for patients with lumbar interbody fusion. Biomechanical deterioration initially triggers complications in the surgical segment. Studies proved that BPS positions and trajectory changes affect the local biomechanical environment. However, no study illustrates the biomechanical effect of insertional screw positions’ change on the surgical segment. Methods Oblique lumbar interbody fusion (OLIF) with different BPS insertional positions has been simulated in a well-validated lumbo-sacral model. Fixation stability and stress responses on the surgical segment were evaluated under identical loading conditions. Results There is no clear variation tendency for the risk of BPS failure and the change of strain energy density of the grafted bone. However, shifting the insertional screw position close to the surgical segment will increase the range of motions (ROM) in the surgical segment and lead to stress concentration of bony structures, especially in the caudal side of the surgical segment. Conclusion Adjusting the insertional position of BPS close to the surgical segment in OLIF models will lead to stress concentration of bony structures and surgical segmental instability. Therefore, reducing BPS’s fixation length was not recommended, which may increase the risk of segmental instability, non-union, and cage subsidence.
Collapse
Affiliation(s)
- Chen Xu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
| | - Chenyi Huang
- Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Ping Cai
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Zhongxin Fang
- Fluid and Power Machinery Key Laboratory of Ministry of Education, Xihua University, Chengdu, People’s Republic of China
| | - Zhangchao Wei
- Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Fei Liu
- Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Jingchi Li
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
- Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
- Jingchi Li, Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, No. 182, Chunhui Road, Luzhou, Sichuan Province, 646000, People’s Republic of China, Email
| | - Yang Liu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People’s Republic of China
- Correspondence: Yang Liu, Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 415th Fengyang Road, Shanghai, 200003, People’s Republic of China, Email
| |
Collapse
|
17
|
Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test. Sci Rep 2021; 11:12968. [PMID: 34155224 PMCID: PMC8217271 DOI: 10.1038/s41598-021-90686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
At present, the pedicle screw is the most commonly used internal fixation device. However, there are many kinds of common posterior pedicle screw insertion techniques performed to reconstruct the lumbar stability. Therefore, spinal surgeons often face a difficult choice. The stress distribution of internal fixation system is an important index for evaluating safety. Unfortunately, little had been known about the difference of stress distribution of screw-rod systems that established by Roy-Camille, Magerl and Krag insertion techniques. Here, combination of finite element analysis and model measurement research was adopted to evaluate the difference of stress. Following different pedicle screw insertion techniques, three lumbar posterior surgery models were established after modeling and validation of the L1–S1 vertebrae finite element model. By analyzing the data, we found that stress concentration phenomenon was in all the postoperative models. Roy-Camille and Magerl insertion techniques led to the great stress on screw-rod systems. Then, fresh frozen calf spines were selected as a model for subsequent measurements. Fitted with a specially designed test pedicle screw, L5–L6 vertebrae were selected to repeat and verify the results of the finite element analysis. With the aid of universal testing machine and digital torque wrench, models simulated flexion, extension, lateral bending and rotation. Finally, the strain value was captured by the strain gauge and was then calculated as the stress value. Krag and Magerl were found to be the safer choice for pedicle screw insertion. Overall, our combination method obtained the reliable result that Krag insertion technique was the safer approach for pedicle screw implantation due to its relatively dispersive stress. Therefore, without the consideration of screw size, pedicle fill, bone density, and bone structures, we recommend the Krag insertion technique as the first choice to reconstruction of lumbar stability. Additionally, the combination method of finite element analysis and strain gauge measurement can provide a feasible way to study the stress distribution of spinal internal fixation.
Collapse
|
18
|
Sensale M, Vendeuvre T, Schilling C, Grupp T, Rochette M, Dall'Ara E. Patient-Specific Finite Element Models of Posterior Pedicle Screw Fixation: Effect of Screw's Size and Geometry. Front Bioeng Biotechnol 2021; 9:643154. [PMID: 33777914 PMCID: PMC7990075 DOI: 10.3389/fbioe.2021.643154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Pedicle screw fixation is extensively performed to treat spine injuries or diseases and it is common for thoracolumbar fractures. Post-operative complications may arise from this surgery leading to back pain or revisions. Finite element (FE) models could be used to predict the outcomes of surgeries but should be verified when both simplified and realistic designs of screws are used. The aim of this study was to generate patient-specific Computed Tomography (CT)-based FE models of human vertebrae with two pedicle screws, verify the models, and use them to evaluate the effect of the screws' size and geometry on the mechanical properties of the screws-vertebra structure. FE models of the lumbar vertebra implanted with two pedicle screws were created from anonymized CT-scans of three patients. Compressive loads were applied to the head of the screws. The mesh size was optimized for realistic and simplified geometry of the screws with a mesh refinement study. Finally, the optimal mesh size was used to evaluate the sensitivity of the model to changes in screw's size (diameter and length) and geometry (realistic or simplified). For both simplified and realistic models, element sizes of 0.6 mm in the screw and 1.0 mm in the bone allowed to obtain relative differences of approximately 5% or lower. Changes in screw's length resulted in 4-10% differences in maximum deflection, 1-6% differences in peak stress in the screws, 10-22% differences in mean strain in the bone around the screw; changes in screw's diameter resulted in 28-36% differences in maximum deflection, 6-27% differences in peak stress in the screws, and 30-47% differences in mean strain in the bone around the screw. The maximum deflection predicted with realistic or simplified screws correlated very well (R 2 = 0.99). The peak stress in screws with realistic or simplified design correlated well (R 2 = 0.82) but simplified models underestimated the peak stress. In conclusion, the results showed that the diameter of the screw has a major role on the mechanics of the screw-vertebral structure for each patient. Simplified screws can be used to estimate the mechanical properties of the implanted vertebrae, but the systematic underestimation of the peak stress should be considered when interpreting the results from the FE analyses.
Collapse
Affiliation(s)
- Marco Sensale
- Ansys France, Lyon, France.,Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Tanguy Vendeuvre
- Spine and Neuromodulation Functional Unit, Poitiers University Hospital, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | | | - Thomas Grupp
- Aesculap AG, Research and Development, Tuttlingen, Germany.,Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Ludwig Maximilians University of Munich, Munich, Germany
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Schulze M, Riesenbeck O, Vordemvenne T, Raschke MJ, Evers J, Hartensuer R, Gehweiler D. Complex biomechanical properties of non-augmented and augmented pedicle screws in human vertebrae with reduced bone density. BMC Musculoskelet Disord 2020; 21:151. [PMID: 32143605 PMCID: PMC7060638 DOI: 10.1186/s12891-020-3158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022] Open
Abstract
Background In osteoporotic bone, the quality of the bone-to-implant interface is decreased, which may lead to early implant failure. Screw anchorage can be improved by augmentation. This effect is mainly investigated with a pull-out test. To our knowledge, the effect of cement augmentation in an in vivo physiological setup focusing on screw movement has not been investigated to date. The aim of this work was to investigate and compare augmented and native screw behavior in a physiologically related setup. Methods Twelve fresh-frozen human lumbar vertebrae were divided into two groups. Each vertebra was bilaterally instrumented with either non-augmented or augmented pedicle screw systems and loaded in a recently developed test setup that provided cyclic conditions comparable to a physiological gait. The cyclic loading should test the primary implant stability, comparable to the postoperative period of two months in a worst-case scenario in the absence of osseous remodeling. Screws were tracked optically, and screw movement and failure patterns were observed. Results Mutual influence between the left and right sides resulted in a successive, rather than simultaneous, failure. Augmentation of the screws in vertebrae with poor bone quality reduced screw subsidence and thus improved the rigidity of the screw-to-implant interface by up to six-fold. The non-augmented condition was significantly related to early screw failure. Conclusions Pedicle screw system failure involves a complex bilateral-coupled mechanism. The cyclic loading based on physiological conditions during walking has allowed the postoperative conditions and clinical failure mechanisms to be simulated in vitro and clarified. Future implant systems should be investigated with a physiologically related setup.
Collapse
Affiliation(s)
- Martin Schulze
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany. .,University Hospital Münster, Department of General Orthopaedics and Tumor Orthopaedics, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Oliver Riesenbeck
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Thomas Vordemvenne
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,Evangelical Hospital Bethel GmbH, Department of Trauma Surgery and Orthopaedics, Bielefeld, Germany
| | - Michael J Raschke
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Julia Evers
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - René Hartensuer
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Dominic Gehweiler
- University Hospital Münster, Department of Trauma, Hand and Reconstructive Surgery, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
20
|
Jung JM, Hyun SJ, Kim KJ, Jahng TA, Kim HJ, Choi Y. Anatomic Trajectory Screw Fixation at Upper Instrumented Vertebra Is a Substantial Risk Factor for Proximal Junctional Kyphosis. World Neurosurg 2019; 129:e522-e529. [PMID: 31152888 DOI: 10.1016/j.wneu.2019.05.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study aimed to investigate the risk of proximal junction kyphosis (PJK) and proximal junction failure (PJF) associated with screw trajectory (straightforward vs. mixed vs. anatomic) at upper instrumented vertebra (UIV). METHODS A single-center, single-surgeon consecutive series of adult patients who underwent lumbar fusion for ≥4 levels (the UIV of the thoracolumbar spine, T9-L2, and the lower instrumented vertebra at the sacrum or pelvis) was retrospectively reviewed. Patients were divided into 3 groups according to UIV screw trajectory: group S, 2 straightforward screws; group M, 1 straightforward screw and 1 anatomic trajectory screw; and group A, 2 anatomic trajectory screws. RESULTS A total of 83 patients were included in this study, including 51 in group S, 16 in group M, and 16 in group A. The incidence of PJK in group S (12 patients, 23.5%), group M (7 patients, 43.8%), and group A (9 patients, 56.3%) significantly increased in sequence by group (P = 0.044). Anatomic trajectory screw fixation increased the risk for PJF requiring revision surgery compared with straightforward screw fixation (3 patients [18.8%] vs. 1 patient [2.0%]; P = 0.040). Multivariable analysis identified that anatomic trajectory screw fixation was a significant risk factor for PJK (P = 0.008; adjusted odds ratio = 7.591; 95% confidence interval, 1.69-34.093). CONCLUSION Anatomic trajectory screw fixation at the UIV is a substantial risk factor for PJK and PJF. To reduce PJK and PJF, straightforward screw fixation at the UIV is recommended in adult spinal deformity correction surgery.
Collapse
Affiliation(s)
- Jong-Myung Jung
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Seung-Jae Hyun
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Ki-Jeong Kim
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Tae-Ahn Jahng
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hyun-Jib Kim
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Yunhee Choi
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Fan W, Guo LX. A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3162. [PMID: 30294902 DOI: 10.1002/cnm.3162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to examine breakage risk of the bilateral pedicle screw (BPS) fixation system under static and vibration loadings after three different types of lumbar interbody fusion surgery. A previously validated intact L1-sacrum finite element model was modified to simulate anterior, posterior, and transforaminal lumbar interbody fusion (ALIF, PLIF, and TLIF, respectively) with BPS fixation system (consisting of pedicle screws and rigid connecting rods) at L4-L5. As a risk parameter for breakage, the von Mises stresses in the pedicle screws and the rods for the ALIF, PLIF, and TLIF models under static loading (flexion, extension, lateral bending, and axial torsion moments) and vibration loading (sinusoidal vertical load) were calculated and compared. The calculated von Mises stresses were different in the ALIF, PLIF, and TLIF models, but these stresses for all the fusion models were found to be concentrated in neck of the pedicle screw and middle of the rod under both the static and vibration loadings. The results from static analyses showed that the maximum stress in the BPS fixation system was greater in the TLIF model than in the ALIF and PLIF models under all the applied static loadings. The results from transient dynamic analyses also showed that the TLIF generated greater dynamic responses of the stress in the BPS fixation system to the vertical vibration compared with the ALIF and PLIF. It implies that the TLIF procedure might incur a higher risk of breakage for the BPS fixation system than the ALIF and PLIF procedures.
Collapse
Affiliation(s)
- Wei Fan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
22
|
Fan W, Guo LX. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine. Comput Methods Biomech Biomed Engin 2019; 22:490-498. [DOI: 10.1080/10255842.2019.1566816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Fan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
23
|
Xu M, Yang J, Lieberman I, Haddas R. Stress distribution in vertebral bone and pedicle screw and screw–bone load transfers among various fixation methods for lumbar spine surgical alignment: A finite element study. Med Eng Phys 2019; 63:26-32. [DOI: 10.1016/j.medengphy.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
24
|
Biswas JK, Sahu TP, Rana M, Roy S, Karmakar SK, Majumder S, Roychowdhury A. Design factors of lumbar pedicle screws under bending load: A finite element analysis. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Pull-out strength of patient-specific template-guided vs. free-hand fluoroscopically controlled thoracolumbar pedicle screws: a biomechanical analysis of a randomized cadaveric study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:2865-2872. [DOI: 10.1007/s00586-017-5025-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|