1
|
Yang F, Liu D, Yin W, Yuan C, Hu Y, Xu J, Yang Y, Tang J, Chen J. Three-dimensional finite element analysis of the biomechanical behaviour of different dental implants under immediate loading during three masticatory cycles. Heliyon 2024; 10:e32616. [PMID: 38961961 PMCID: PMC11219977 DOI: 10.1016/j.heliyon.2024.e32616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
The study aimed to evaluate the impact of varying modulus of elasticity (MOE) values of dental implants on the deformation and von Mises stress distribution in implant systems and peri-implant bone tissues under dynamic cyclic loading. The implant-bone interface was characterised as frictional contact, and the initial stress was induced using the interference fit method to effectively develop a finite element model for an immediately loaded implant-supported denture. Using the Ansys Workbench 2021 R2 software, an analysis was conducted to examine the deformation and von Mises stress experienced by the implant-supported dentures, peri-implant bone tissue, and implants under dynamic loading across three simulated masticatory cycles. These findings were subsequently evaluated through a comparative analysis. The suprastructures showed varying degrees of maximum deformation across zirconia (Zr), titanium (Ti), low-MOE-Ti, and polyetheretherketone (PEEK) implant systems, registering values of 103.1 μm, 125.68 μm, 169.52 μm, and 844.06 μm, respectively. The Zr implant system demonstrated the lowest values for both maximum deformation and von Mises stress (14.96 μm, 86.71 MPa) in cortical bone. As the MOE increased, the maximum deformation in cancellous bone decreased. The PEEK implant system exhibited the highest maximum von Mises stress (59.12 MPa), whereas the Ti implant system exhibited the lowest stress (22.48 MPa). Elevating the MOE resulted in reductions in both maximum deformation and maximum von Mises stress experienced by the implant. Based on this research, adjusting the MOE of the implant emerged as a viable approach to effectively modify the biomechanical characteristics of the implant system. The Zr implant system demonstrated the least maximum von Mises stress and deformation, presenting a more favourable quality for preserving the stability of the implant-bone interface under immediate loading.
Collapse
Affiliation(s)
- Feng Yang
- School and Hospital of Stomatology, Fujian Medical University, Fujian, China
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Dianbin Liu
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Wenjie Yin
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Yiming Hu
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Jiaqi Xu
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Yunfan Yang
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Jianteng Tang
- School of Stomatology, Xuzhou Medical University, Jiangsu, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| |
Collapse
|
2
|
de Almeida MVR, Ribeiro MCO, Dos Reis-Neta GR, Vargas-Moreno VF, Gomes RS, da Silva WJ, Del Bel Cury AA, Marcello-Machado RM. Dental implant and abutment in PEEK: stress assessment in single crown retainers on anterior region. Clin Oral Investig 2024; 28:336. [PMID: 38795258 DOI: 10.1007/s00784-024-05722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. MATERIALS AND METHODS Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. RESULTS The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. CONCLUSION Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. CLINICAL RELEVANCE The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.
Collapse
Affiliation(s)
- Marcus Vinicius Rocha de Almeida
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Michele Costa Oliveira Ribeiro
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Gilda Rocha Dos Reis-Neta
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Vanessa Felipe Vargas-Moreno
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Rafael Soares Gomes
- Departamento de prótese, Faculdade de tecnologia e ciência (UniFTC), Av. Luís Viana Filho, 8812 - Paralela, Salvador, BA, Brasil
| | - Wander José da Silva
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Altair Antoninha Del Bel Cury
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil
| | - Raissa Micaella Marcello-Machado
- Departamento de prótese e periodontia, Faculdade de odontologia de Piracicaba, Universidade de Campinas - (FOP-UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo, Brasil.
- Faculdade de odontologia, Universidade Paulista (UNIP), R. Dr. Bacelar, 1212, São Paulo, SP, Brasil.
| |
Collapse
|
3
|
Khaohoen A, Sornsuwan T, Chaijareenont P, Poovarodom P, Rungsiyakull C, Rungsiyakull P. Biomaterials and Clinical Application of Dental Implants in Relation to Bone Density-A Narrative Review. J Clin Med 2023; 12:6924. [PMID: 37959389 PMCID: PMC10649288 DOI: 10.3390/jcm12216924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Titanium has been the material of choice for dental implant fixtures due to its exceptional qualities, such as its excellent balance of rigidity and stiffness. Since zirconia is a soft-tissue-friendly material and caters to esthetic demands, it is an alternative to titanium for use in implants. Nevertheless, bone density plays a vital role in determining the material and design of implants. Compromised bone density leads to both early and late implant failures due to a lack of implant stability. Therefore, this narrative review aims to investigate the influence of implant material/design and surgical technique on bone density from both biomechanical and biological standpoints. Relevant articles were included for analysis. Dental implant materials can be fabricated from titanium, zirconia, and PEEK. In terms of mechanical and biological aspects, titanium is still the gold standard for dental implant materials. Additionally, the macro- and microgeometry of dental implants play a role in determining and planning the appropriate treatment because it can enhance the mechanical stress transmitted to the bone tissue. Under low-density conditions, a conical titanium implant design, longer length, large diameter, reverse buttress with self-tapping, small thread pitch, and deep thread depth are recommended. Implant material, implant design, surgical techniques, and bone density are pivotal factors affecting the success rates of dental implant placement in low-density bone. Further study is required to find the optimal implant material for a clinical setting's bone state.
Collapse
Affiliation(s)
- Angkoon Khaohoen
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Tanapon Sornsuwan
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Pisaisit Chaijareenont
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Pongsakorn Poovarodom
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| | - Chaiy Rungsiyakull
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimduen Rungsiyakull
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.K.); (P.C.); (P.P.)
| |
Collapse
|
4
|
Tardelli JDC, de Barros Ciribelli Alves BM, da Costa Valente ML, dos Reis AC. Influence of the modulus of elasticity of dental implants on the distribution of stresses in the alveolar bone by the finite element method: a systematic review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2023. [DOI: 10.1016/j.ajoms.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Xie B, Chen J, Zhao T, Shen J, Dörsam I, He Y. Three-Dimensional Finite Element Analysis of Anterior Fixed Partial Denture Supported by Implants with Different Materials. Ann Anat 2022; 243:151943. [DOI: 10.1016/j.aanat.2022.151943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
6
|
Evaluation of Zirconia and High Performance Polymer Abutment Surface Roughness and Stress Concentration for Implant-Supported Fixed Dental Prostheses. COATINGS 2022. [DOI: 10.3390/coatings12020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: The High Performance Polymer is a based polymer biomaterial that was introduced as dental material to manufacture dentures superstructure and dental implants abutments. However, its surface characteristics and stress state still need to be properly described. The aim of this study was to compare the surface characteristics of a High Performance Polymer (Bio-HPP, Bredent, Senden, Germany) for computer-aided design and computer-aided manufacturing (CAD/CAM) milling and a Zirconia (Zirkonzahn, Steger, Ahrntal, Italy). Methods: The abutments surface roughness (Ra) was evaluated for each abutment material (N = 12) using a confocal laser microscope. Data were evaluated using One-Way ANOVA and Tukey tests (p < 0.05). In addition, a finite element analysis software was used to present stress measurement data as stress maps with 100 N loading. Results were generated according to Von-mises stress criteria and stress peaks were recorded from each structure. Results: Results showed a mean Ra of 0.221 ± 0.09 μm for Bio-HPP and 1.075 ± 0.24 μm for Zirconia. Both surface profiles presented a smooth characteristic regardless the measurement axis. The stress peaks from implant fixture and screw were not affected by the abutment material, however the high performance polymer showed the highest stress magnitude for the abutment region. Conclusions: Comparing the present results with the literature it is suggested that the CAD/CAM High Performance Polymer abutments present an adequate surface roughness with acceptable values of stress.
Collapse
|
7
|
Villefort RF, Diamantino PJS, von Zeidler SLV, Borges ALS, Silva-Concílio LR, de Siqueira Ferreira Anzaloni Saavedra G, Tribst JPM. Mechanical Response of PEKK and PEEK As Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur J Dent 2021; 16:115-121. [PMID: 34560810 PMCID: PMC8890915 DOI: 10.1055/s-0041-1731833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective
Polymeric framework represent an innovative approach for implant-supported dental prostheses. However, the mechanical response of ultra-high performance polymers as frameworks for full-arch prostheses under the “all-on-four concept” remains unclear. The present study applied finite element analysis to examine the behavior of polyetherketoneketone (PEKK) and polyetheretherketone (PEEK) prosthetic frameworks.
Materials and Methods
A three-dimensional maxillary model received four axially positioned morse-taper implants, over which a polymeric bar was simulated. The full-arch prosthesis was created from a previously reported database model, and the imported geometries were divided into a mesh composed of nodes and tetrahedral elements in the analysis software. The materials were assumed as isotropic, elastic, and homogeneous, and all contacts were considered bonded. A normal load (500 N magnitude) was applied at the occlusal surface of the first left molar after the model was fixed at the base of the cortical bone. The microstrain and von-Mises stress were selected as criteria for analysis.
Results
Similarities in the mechanical response were observed in both framework for the peri-implant tissue, as well as for stress generated in the implants (263–264 MPa) and abutments (274–273 MPa). The prosthetic screw and prosthetic base concentrated more stress with PEEK (211 and 58 MPa, respectively) than with PEKK (192 and 49 MPa), while the prosthetic framework showed the opposite behavior (59 MPa for PEEK and 67 MPa for PEKK).
Conclusion
The main differences related to the mechanical behavior of PEKK and PEEK frameworks for full-arch prostheses under the “all-on-four concept” were reflected in the prosthetic screw and the acrylic base. The superior shock absorbance of PEKK resulted in a lower stress concentration on the prosthetic screw and prosthetic base. This would clinically represent a lower fracture risk on the acrylic base and screw loosening. Conversely, lower stress concentration was observed on PEEK frameworks.
Collapse
Affiliation(s)
- Regina Furbino Villefort
- Federal University of Espírito Santo, Rede Nordeste de Biotecnologia, Vitória, Espírito Santo, Brazil
| | - Pedro Jacy Santos Diamantino
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | | | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Villefort RF, Tribst JPM, Dal Piva AMDO, Borges AL, Binda NC, Ferreira CEDA, Bottino MA, von Zeidler SLV. Stress distribution on different bar materials in implant-retained palatal obturator. PLoS One 2020; 15:e0241589. [PMID: 33125441 PMCID: PMC7598468 DOI: 10.1371/journal.pone.0241589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Implant-retained custom-milled framework enhances the stability of palatal obturator prostheses. Therefore, to evaluate the mechanical response of implant-retained obturator prostheses with bar-clip attachment and milled bars, in three different materials under two load incidences were simulated. A maxilla model which Type IIb maxillary defect received five external hexagon implants (4.1 x 10 mm). An implant-supported palatal obturator prosthesis was simulated in three different materials: polyetheretherketone (PEEK), titanium (Ti:90%, Al:6%, V:4%) and Co-Cr (Co:60.6%, Cr:31.5%, Mo:6%) alloys. The model was imported into the analysis software and divided into a mesh composed of nodes and tetrahedral elements. Each material was assumed isotropic, elastic and homogeneous and all contacts were considered ideal. The bone was fixed and the load was applied in two different regions for each material: at the palatal face (cingulum area) of the central incisors (100 N magnitude at 45°); and at the occlusal surface of the first left molar (150 N magnitude normal to the surface). The microstrain and von-Mises stress were selected as criteria for analysis. The posterior load showed a higher strain concentration in the posterior peri-implant tissue, near the load application side for cortical and cancellous bone, regardless the simulated material. The anterior load showed a lower strain concentration with reduced magnitude and more implants involving in the load dissipation. The stress peak was calculated during posterior loading, which 77.7 MPa in the prosthetic screws and 2,686 με microstrain in the cortical bone. For bone tissue and bar, the material stiffness was inversely proportional to the calculated microstrain and stress. However, for the prosthetic screws and implants the PEEK showed higher stress concentration than the other materials. PEEK showed a promising behavior for the bone tissue and for the integrity of the bar and bar-clip attachments. However, the stress concentration in the prosthetic screws may represent an increase in failure risk. The use of Co-Cr alloy can reduce the stress in the prosthetic screw; however, it increases the bone strain; while the Titanium showed an intermediate behavior.
Collapse
Affiliation(s)
- Regina Furbino Villefort
- Biotechnology Program, Federal University of Espírito Santo, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Espírito Santo, Brazil
| | - João Paulo Mendes Tribst
- Post-Graduate Program in Restorative Dentistry (Prosthodontic), Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (Unesp/SJC), São José dos Campos, SP, Brazil
| | - Amanda Maria de Oliveira Dal Piva
- Post-Graduate Program in Restorative Dentistry (Prosthodontic), Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (Unesp/SJC), São José dos Campos, SP, Brazil
| | - Alexandre Luiz Borges
- Post-Graduate Program in Restorative Dentistry (Prosthodontic), Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (Unesp/SJC), São José dos Campos, SP, Brazil
| | - Nívia Castro Binda
- Biotechnology Program, Federal University of Espírito Santo, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Espírito Santo, Brazil
| | | | - Marco Antonio Bottino
- Post-Graduate Program in Restorative Dentistry (Prosthodontic), Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (Unesp/SJC), São José dos Campos, SP, Brazil
| | - Sandra Lúcia Ventorim von Zeidler
- Biotechnology Program, Federal University of Espírito Santo, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Espírito Santo, Brazil
| |
Collapse
|