GMFCS Level-Specific Differences in Kinematics and Joint Moments of the Involved Side in Unilateral Cerebral Palsy.
J Clin Med 2022;
11:jcm11092556. [PMID:
35566682 PMCID:
PMC9100606 DOI:
10.3390/jcm11092556]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 01/16/2023] Open
Abstract
A variety of gait pathologies is seen in cerebral palsy. Movement patterns between different levels of functional impairment may differ. The objective of this work was the evaluation of Gross Motor Function Classification System (GMFCS) level-specific movement disorders. A total of 89 individuals with unilateral cerebral palsy and no history of prior treatment were included and classified according to their functional impairment. GMFCS level-specific differences, kinematics and joint moments, exclusively of the involved side, were analyzed for all planes for all lower limb joints, including pelvic and trunk movements. GMFCS level I and level II individuals most relevantly showed equinus/reduced dorsiflexion moments, knee flexion/reduced knee extension moments, reduced hip extension moments with pronounced flexion, internal hip rotation and reduced hip abduction. Anterior pelvic tilt, obliquity and retraction were found. Individuals with GMFCS level II were characterized by an additional pronounced reduction in all extensor moments, pronounced rotational malalignment and reduced hip abduction. The most striking characteristics of GMFCS level II were excessive anterior pelvic/trunk tilt and excessive trunk obliquity. Pronounced reduction in extensor moments and excessive trunk lean are distinguishing features of GMFCS level II. These patients would benefit particularly from surgical treatment restoring pelvic symmetry and improving hip abductor leverage. Future studies exploring GMFCS level-specific compensation of the sound limb and GMFCS level-specific malalignment are of interest.
Collapse