1
|
van der Waals MJ, Thornton SF, Rolfe SA, Rock L, Smith JWN, Bosma TNP, Gerritse J. Potential of stable isotope analysis to deduce anaerobic biodegradation of ethyl tert-butyl ether (ETBE) and tert-butyl alcohol (TBA) in groundwater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16150-16163. [PMID: 38319419 PMCID: PMC10894111 DOI: 10.1007/s11356-024-32109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
- Present address: KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands
| | - Steven F Thornton
- Department of Civil and Structural Engineering, University of Sheffield, Mappin St, Sheffield, S1 3JD, UK
| | - Stephen A Rolfe
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Luc Rock
- Shell Global Solutions International BV, Carel van Bylandtlaan 30, The Hague, 2596 HR, The Netherlands
- Present address: Shell Global Solutions (Canada) Inc, 4000 - 500 Centre Street SE, Calgary, AB, T2G 1A6, Canada
| | - Jonathan W N Smith
- Shell Global Solutions (UK) Ltd, Shell Centre, York Road, London, SE1 7NA, UK
| | - Tom N P Bosma
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
| | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands.
| |
Collapse
|
2
|
Ma R, Zhu Z, Wang B, Zhao Y, Yin X, Lu F, Wang Y, Su J, Hocart CH, Zhou Y. Novel Position-Specific 18O/16O Measurement of Carbohydrates. I. O-3 of Glucose and Confirmation of 18O/16O Heterogeneity at Natural Abundance Levels in Glucose from Starch in a C4 Plant. Anal Chem 2018; 90:10293-10301. [DOI: 10.1021/acs.analchem.8b02022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Ma
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Zhenyu Zhu
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Bo Wang
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Yu Zhao
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xijie Yin
- SOA Third Institute of Oceanography, Xiamen 361005, China
| | - Fengyan Lu
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Ying Wang
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Jing Su
- SOA Third Institute of Oceanography, Xiamen 361005, China
| | - Charles H. Hocart
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| |
Collapse
|