1
|
Lee SH, Song SY, Choi JH, Kim S, Lee HJ, Park JW, Park DH, Bae CS, Cho SS. Partial Purification and Biochemical Evaluation of Protease Fraction (MA-1) from Mycoleptodonoides aitchisonii and Its Fibrinolytic Effect. Antioxidants (Basel) 2023; 12:1558. [PMID: 37627553 PMCID: PMC10451839 DOI: 10.3390/antiox12081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The antioxidative proteolytic fraction, MA-1, was partially purified from Mycoleptodonoides aitchisonii. MA-1 was purified to homogeneity using a two-step procedure, which resulted in an 89-fold increase in specific activity and 42.5% recovery. SDS-PAGE revealed two proteins with a molecular weight of 48 kDa. The zymography results revealed proteolytic activity based on the MA-1 band. MA-1 was found to be stable in the presence of Na+, Ca2+, Fe3+, K+, and Mg2+. MA-1 was also stable in methanol, ethanol, and acetone, and its enzyme activity increased by 15% in SDS. MA-1 was inhibited by ethylenediaminetetra-acetic acid or ethylene glycol tetraacetic acid and exerted the highest specificity for the substrate, MeO-Suc-Arg-Pro-Tyr-pNA, for chymotrypsin. Accordingly, MA-1 belongs to the family of chymotrypsin-like metalloproteins. The optimum temperature was 40 °C and stability was stable in the range of 20 to 35 °C. The optimum pH and stability were pH 5.5 and pH 4-11. MA-1 exhibited stronger fibrinolytic activity than plasmin. MA-1 hydrolyzed the Aα, Bβ, and γ chains of fibrinogen within 2 h. MA-1 exhibited an antithrombotic effect in animal models. MA-1 was devoid of hemorrhagic activity at a dose of 80,000 U/kg. Overall, our results show that M. aitchisonii produces an acid-tolerant and antioxidative chymotrypsin-like fibrinolytic enzyme, and M. aitchisonii containing MA-1 could be a beneficial functional material for the prevention of cardiovascular diseases and possible complications.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.-H.L.); (S.-Y.S.); (J.W.P.)
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Mokpo 58554, Republic of Korea
| | - Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.-H.L.); (S.-Y.S.); (J.W.P.)
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Mokpo 58554, Republic of Korea
| | - Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (S.K.); (H.-J.L.)
| | - Seung Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (S.K.); (H.-J.L.)
| | - Hyo-Jeong Lee
- Department of Food Science and Biotechnology, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (S.K.); (H.-J.L.)
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.-H.L.); (S.-Y.S.); (J.W.P.)
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Mokpo 58554, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Republic of Korea;
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; (S.-H.L.); (S.-Y.S.); (J.W.P.)
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Mokpo 58554, Republic of Korea
| |
Collapse
|
2
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
3
|
Abstract
Abstract
Fungi including mushrooms have been proved to be an important biosource of numerous metabolites having a huge variety of chemical structures and diverse bioactivities. Metabolites of mushrooms are of remarkable importance as new lead compounds for medicine and agrochemicals. This review presents some of our studies on biologically functional molecules purified from mushroom-forming fungi; (1) endoplasmic reticulum stress suppressor, (2) osteoclast-forming suppressing compounds, (3) plant growth regulators.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Lee SY, Bae CS, Seo JH, Cho SS, Bae MS, Oh DS, Park DH. Mycoleptodonoides aitchisonii suppresses asthma via Th2 and Th1 cell regulation in an ovalbumin‑induced asthma mouse model. Mol Med Rep 2017; 17:11-20. [PMID: 29115454 PMCID: PMC5780072 DOI: 10.3892/mmr.2017.7901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic respiratory disease related to hyper‑responsiveness. The majority of patients suffer mild symptoms, however, some cases, especially in the young and the elderly, can lead to death by apnea. Mycoleptodonoides atichisonii (M. atichisonii) is an edible mushroom that has previously been reported to possess several bioactive properties, such as the synthesis of nerve growth factors, anti‑obesity effects and the ability to prevent cell death. In the current study, the authors evaluated the anti‑asthmatic effects of M. atichisonii using an ovalbumin‑induced asthma mouse model. M. atichisonii dose‑dependently suppressed the levels of white blood cells, eosinophils and immunoglobulin (Ig)E in BALB/c mice, resulting from ovalbumin‑induced asthma. M. atichisonii recovered the typical asthmatic morphological changes in lungs, such as mucous hyper‑secretion, epithelial layer hyperplasia, eosinophil infiltration and various cell surface molecules, such as CD3, CD4, CD8, CD19 and major histocompatibility complex class II. With the exception of CD19+ cells and IL‑12p40, M. atichisonii affected almost all factors related to asthma induction including the T helper (Th)1/Th2 transcription factors, T‑bet and GATA‑3, Th1‑related cytokines, Th2‑related cytokines and proinflammatory cytokines. In addition, M. atichisonii significantly inhibited the expression of IL‑5, IL‑13 and IL‑6. The authors concluded that M. atichisonii may be a promising drug candidate against asthma.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Oriental Medicine, Dongshin University, Naju, Jeollanam‑do 58245, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Hye Seo
- College of Oriental Medicine, Dongshin University, Naju, Jeollanam‑do 58245, Republic of Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeollanam‑do 58554, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, College of Engineering, Mokpo National University, Muan, Jeollanam‑do 58554, Republic of Korea
| | - Deuk-Sil Oh
- Jeollanam‑do Wando Arboretum, Wando, Jeollanam‑do 59105, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju, Jeollanam‑do 58245, Republic of Korea
| |
Collapse
|
5
|
Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 2016; 35:355-68. [PMID: 24654802 DOI: 10.3109/07388551.2014.887649] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
Collapse
Affiliation(s)
- Chia-Wei Phan
- a Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | | | | | | | | |
Collapse
|
6
|
Rahman MA, Abdullah N, Aminudin N. Interpretation of mushroom as a common therapeutic agent for Alzheimer’s disease and cardiovascular diseases. Crit Rev Biotechnol 2015; 36:1131-1142. [DOI: 10.3109/07388551.2015.1100585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mohammad Azizur Rahman
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka Bangladesh
| | - Noorlidah Abdullah
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
| | - Norhaniza Aminudin
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
| |
Collapse
|
7
|
Zhou W, Yoshioka M, Yokogoshi H. Sub-chronic effects of s-limonene on brain neurotransmitter levels and behavior of rats. J Nutr Sci Vitaminol (Tokyo) 2009; 55:367-73. [PMID: 19763039 DOI: 10.3177/jnsv.55.367] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was designed to gain insight into the effects of s-limonene on the brain after 1-wk administration. For this purpose, neurotransmitters such as dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamic acid (Glu) and some of their metabolites (DOPAC and 5-HIAA) were determined by HPLC-ECD and amino acid analyzer after 1-wk administration of s-limonene of different concentrations (0, 5, 25, 50 mg/kg). Significant changes, such as GABA, 5-hydroxyindoleacetic acid (5-HIAA) and 5-HT, were confirmed. At the same time, basal hypothalamic-pituitary-adrenal (HPA) activity after 1-wk administration of s-limonene was evaluated by corticosterone. Considering the increment of GABA and the changes of other neurotransmitters, anti-stress effects after 1-wk administration were observed. The experimental results showed that s-limonene could inhibit HPA activity under physical stress and this anti-stress effect of s-limonene may act through the GABA(A) receptor.
Collapse
Affiliation(s)
- Wenjun Zhou
- Laboratory of Nutritional Biochemistry, Global COE Program in the 21st Century, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, Yada, Suruga, Shizuoka, Japan
| | | | | |
Collapse
|
8
|
Choi JH, Horikawa M, Okumura H, Kodani S, Nagai K, Hashizume D, Koshino H, Kawagishi H. Endoplasmic reticulum (ER) stress protecting compounds from the mushroom Mycoleptodonoides aitchisonii. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yamada T, Yamada Y, Okano Y, Terashima T, Yokogoshi H. Anxiolytic effects of short- and long-term administration of cacao mass on rat elevated T-maze test. J Nutr Biochem 2008; 20:948-55. [PMID: 18976895 DOI: 10.1016/j.jnutbio.2008.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
We demonstrated the effects of short- and long-term administration of cacao mass on anxiety in the elevated T-maze test, which is an animal model of anxiety. In the first study, we administered cacao mass (100 mg/100 g body weight) per os and immediately performed the elevated T-maze test. Short-term cacao mass significantly abolished delayed avoidance latency compared with the control but did not change escape latency. This result suggested that cacao mass administration reduced conditional fear-relating behavior. Short-term cacao mass administration did not affect the concentration of brain monoamines, emotion-related neurotransmitters such as norepinephrine, serotonin and dopamine, in the rat brain. In the next study, we fed a cacao mass-containing diet to rats for 2 weeks and performed the elevated T-maze test. Contrary to short-term administration, chronic consumption of cacao mass tended to increase avoidance latency and did not change escape latency. Brain serotonin concentration and its turnover were enhanced by chronic consumption of cacao mass. These results suggested that chronic consumption of cacao did not affect fear-related behavior but was involved in brain monoamine metabolism. In conclusion, we suggest that short-term cacao mass consumption showed an anxiolytic effect but chronic consumption did not.
Collapse
Affiliation(s)
- Takashi Yamada
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | |
Collapse
|