1
|
Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells 2023; 12:2013. [PMID: 37566092 PMCID: PMC10416882 DOI: 10.3390/cells12152013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Hage R, Vignal-Clermont C. Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Front Neurol 2021; 12:651639. [PMID: 34122299 PMCID: PMC8187781 DOI: 10.3389/fneur.2021.651639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease that specifically targets the retinal ganglion cells by reducing their ability to produce enough energy to sustain. The mutations of the mitochondrial DNA that cause LHON are silent until an unknown trigger causes bilateral central visual scotoma. After the onset of loss of vision, most patients experience progressive worsening within the following months. Few of them regain some vision after a period of ~1 year. Management of LHON patients has been focused on understanding the triggers of the disease and its pathophysiology to prevent the onset of visual loss in a carrier. Medical treatment is recommended once visual loss has started in at least one eye. Research evaluated drugs that are thought to be able to restore the mitochondrial electron transport chain of the retinal ganglion cells. Significant advances were made in evaluating free radical cell scavengers and gene therapy as potential treatments for LHON. Although encouraging the results of clinical trial have been mixed in stopping the worsening of visual loss. In patients with chronic disease of over 1 year, efficient treatment that restores vision is yet to be discovered. In this review, we summarize the management strategies for patients with LHON before, during, and after the loss of vision, explain the rationale and effectiveness of previous and current treatments, and report findings about emerging treatments.
Collapse
Affiliation(s)
- Rabih Hage
- Neuro-ophthalmology Department, Hôpital Fondation Rothschild, Paris, France
| | | |
Collapse
|
4
|
The Ketogenic Diet Reduces the Harmful Effects of Stress on Gut Mitochondrial Biogenesis in a Rat Model of Irritable Bowel Syndrome. Int J Mol Sci 2021; 22:ijms22073498. [PMID: 33800646 PMCID: PMC8037144 DOI: 10.3390/ijms22073498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/18/2023] Open
Abstract
Functional alterations in irritable bowel syndrome have been associated with defects in bioenergetics and the mitochondrial network. Effects of high fat, adequate-protein, low carbohydrate ketogenic diet (KD) involve oxidative stress, inflammation, mitochondrial function, and biogenesis. The aim was to evaluate the KD efficacy in reducing the effects of stress on gut mitochondria. Newborn Wistar rats were exposed to maternal deprivation to induce IBS in adulthood. Intestinal inflammation (COX-2 and TRL-4); cellular redox status (SOD 1, SOD 2, PrxIII, mtDNA oxidatively modified purines); mitochondrial biogenesis (PPAR-γ, PGC-1α, COX-4, mtDNA content); and autophagy (Beclin-1, LC3 II) were evaluated in the colon of exposed rats fed with KD (IBD-KD) or standard diet (IBS-Std), and in unexposed controls (Ctrl). IBS-Std rats showed dysfunctional mitochondrial biogenesis (PPAR-γ, PGC-1α, COX-4, and mtDNA contents lower than in Ctrl) associated with inflammation and increased oxidative stress (higher levels of COX-2 and TLR-4, SOD 1, SOD 2, PrxIII, and oxidatively modified purines than in Ctrl). Loss of autophagy efficacy appeared from reduced levels of Beclin-1 and LC3 II. Feeding of animals with KD elicited compensatory mechanisms able to reduce inflammation, oxidative stress, restore mitochondrial function, and baseline autophagy, possibly via the upregulation of the PPAR-γ/PGC-1α axis.
Collapse
|
5
|
Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165743. [PMID: 32105823 PMCID: PMC9252426 DOI: 10.1016/j.bbadis.2020.165743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease mainly affecting retinal ganglion cells (RGCs). The pathogenesis of LHON remains ill-characterized due to a historic lack of effective disease models. Promising models have recently begun to emerge; however, less effective models remain popular. Many such models represent LHON using non-neuronal cells or assume that mutant mtDNA alone is sufficient to model the disease. This is problematic because context-specific factors play a significant role in LHON pathogenesis, as the mtDNA mutation itself is necessary but not sufficient to cause LHON. Effective models of LHON should be capable of demonstrating processes that distinguish healthy carrier cells from diseased cells. In light of these considerations, we review the pathophysiology of LHON as it relates to old, new and future models. We further discuss treatments for LHON and unanswered questions that might be explored using these new model systems.
Collapse
Affiliation(s)
- Tyler Bahr
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. First Author
| | - Kyle Welburn
- University of the Incarnate Word School of Medicine 7615 Kennedy Hill Drive, San Antonio, Texas 78235 Contributing Author
| | - Jonathan Donnelly
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. Contributing author
| | - Yidong Bai
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229
| |
Collapse
|
6
|
Emperador S, López-Gallardo E, Hernández-Ainsa C, Habbane M, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation. Orphanet J Rare Dis 2019; 14:150. [PMID: 31226990 PMCID: PMC6588889 DOI: 10.1186/s13023-019-1128-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The vision loss in Leber hereditary optic neuropathy patients is due to mitochondrial DNA mutations. No treatment has shown a clear-cut benefit on a clinically meaningful end-point. However, clinical evidences suggest two therapeutic approaches: the reduction of the mutation load in heteroplasmic patients or the elevation of mitochondrial DNA amount in homoplasmic patients. RESULTS Here we show that ketogenic treatment, in cybrid cell lines, reduces the percentage of the m.13094 T > C heteroplasmic mutation and also increases the mitochondrial DNA levels of the m.11778G > A mitochondrial genotype. CONCLUSIONS These results suggest that ketogenic diet could be a therapeutic strategy for Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5. Pabellon 11, Planta 0. 28029, Madrid, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5. Pabellon 11, Planta 0. 28029, Madrid, Spain
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5. Pabellon 11, Planta 0. 28029, Madrid, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain. .,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5. Pabellon 11, Planta 0. 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain. .,Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13. 50009, Zaragoza, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5. Pabellon 11, Planta 0. 28029, Madrid, Spain. .,Fundación ARAID, ARAID, Av. de Ranillas, 1-D. Planta 2º, oficina B. 50018, Zaragoza, Spain.
| |
Collapse
|