1
|
Martchenko A, Papaelias A, Bolz SS. Physiologic effects of the maqui berry ( Aristotelia chilensis): a focus on metabolic homeostasis. Food Funct 2024; 15:4724-4740. [PMID: 38618933 DOI: 10.1039/d3fo02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The prevalence and socioeconomic impact of metabolic diseases is rapidly growing. The limited availability of effective and affordable treatments has fuelled interest in the therapeutic potential of natural compounds as they occur in selected food sources. These compounds might help to better manage the current problems of treatment availability, affordability, and adverse effects that, in combination, limit treatment duration and efficacy at present. Specifically, berries garnered interest given a strong epidemiological link between their consumption and improved metabolic functions, making the analysis of their phytochemical composition and the identification and characterization of biologically active ingredients an emerging area of research. In this regard, the present review focuses on the South American maqui berry Aristotelia chilensis, which has been extensively used by the indigenous Mapuche population for generations to treat a variety of disease conditions. An overview of the maqui plant composition precedes a review of pre-clinical and clinical studies that investigated the effects of maqui berries and their major components on metabolic homeostasis. The final part of the review highlights possible technologies to conserve maqui berry structural and functional integrity during passage through the small intestine, ultimately aiming to augment their systemic and luminal bioavailability and biological effects. The integration of the various aspects discussed herein can assist in the development of effective maqui-based therapies to benefit the growing population of metabolically compromised patients.
Collapse
Affiliation(s)
- Alexandre Martchenko
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Alexandra Papaelias
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, 661 University Avenue, 14th Floor, Toronto, M5G 1M1, Canada.
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Castillo-García EL, Cossio-Ramírez AL, Córdoba-Méndez ÓA, Loza-Mejía MA, Salazar JR, Chávez-Gutiérrez E, Bautista-Poblet G, Castillo-Mendieta NT, Moreno DA, García-Viguera C, Pinto-Almazán R, Almanza-Pérez JC, Gallardo JM, Guerra-Araiza C. In Silico and In Vivo Evaluation of the Maqui Berry ( Aristotelia chilensis (Mol.) Stuntz) on Biochemical Parameters and Oxidative Stress Markers in a Metabolic Syndrome Model. Metabolites 2023; 13:1189. [PMID: 38132871 PMCID: PMC10744843 DOI: 10.3390/metabo13121189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic syndrome (MetS) is a complex disease that includes metabolic and physiological alterations in various organs such as the heart, pancreas, liver, and brain. Reports indicate that blackberry consumption, such as maqui berry, has a beneficial effect on chronic diseases such as cardiovascular disease, obesity, and diabetes. In the present study, in vivo and in silico studies have been performed to evaluate the molecular mechanisms implied to improve the metabolic parameters of MetS. Fourteen-day administration of maqui berry reduces weight gain, blood fasting glucose, total blood cholesterol, triacylglycerides, insulin resistance, and blood pressure impairment in the diet-induced MetS model in male and female rats. In addition, in the serum of male and female rats, the administration of maqui berry (MB) improved the concentration of MDA, the activity of SOD, and the formation of carbonyls in the group subjected to the diet-induced MetS model. In silico studies revealed that delphinidin and its glycosylated derivatives could be ligands of some metabolic targets such as α-glucosidase, PPAR-α, and PPAR-γ, which are related to MetS parameters. The experimental results obtained in the study suggest that even at low systemic concentrations, anthocyanin glycosides and aglycones could simultaneously act on different targets related to MetS. Therefore, these molecules could be used as coadjuvants in pharmacological interventions or as templates for designing new multitarget molecules to manage patients with MetS.
Collapse
Affiliation(s)
- Emily Leonela Castillo-García
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (E.L.C.-G.); (G.B.-P.)
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 52919, Mexico
| | - Ana Lizzet Cossio-Ramírez
- Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Óscar Arturo Córdoba-Méndez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (Ó.A.C.-M.); (M.A.L.-M.); (J.R.S.)
| | - Marco A. Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (Ó.A.C.-M.); (M.A.L.-M.); (J.R.S.)
| | - Juan Rodrigo Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (Ó.A.C.-M.); (M.A.L.-M.); (J.R.S.)
| | - Edwin Chávez-Gutiérrez
- Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico;
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (E.L.C.-G.); (G.B.-P.)
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 52919, Mexico
| | - Nadia Tzayaka Castillo-Mendieta
- Postdoctorate-Conacyt-Unidad de Investigación Médica en Enfermedades Neurologicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores, Mexico City 06725, Mexico;
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC. Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (D.A.M.); (C.G.-V.)
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC. Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (D.A.M.); (C.G.-V.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, UAM-I, Mexico City 09310, Mexico;
| | - Juan Manuel Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (E.L.C.-G.); (G.B.-P.)
| |
Collapse
|
3
|
Wacewicz-Muczyńska M, Moskwa J, Puścion-Jakubik A, Naliwajko SK, Niczyporuk M, Socha K. Antioxidant Properties of Maqui Berry Extract ( Aristotelia chilensis (Mol.) Stuntz) and Its Potential Photoprotective Role on Human Skin Fibroblasts. Molecules 2023; 28:7802. [PMID: 38067532 PMCID: PMC10708373 DOI: 10.3390/molecules28237802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Maqui berry (Aristotelia chilensis) is characterized by antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effect of maqui berry extracts on human skin fibroblasts (NHSFs) exposed to ultraviolet radiation (UVB). The photoprotective properties of the extracts were investigated via the determination of the total polyphenolic content (TPC) and antioxidant capacity (DPPH), and the chemical composition was assessed. The chemical purity of the extracts was studied via the evaluation of the toxic elements level. The water extract (MWE 57.75 ± 0.44 mg GAE/g) had the highest mean polyphenol content. The water (MWE) and ethanol (MEE70) extracts had the highest inhibitory activities against DPPH radical formation (283.63 ± 7.29 and 284.60 ± 4.31 mg Tx/L, respectively). The analyzed extracts were found to be safe in terms of toxic elements (arsenic, cadmium, lead). The tested extracts of maqui berry did not cause a cytotoxic effect on NHSF cells after 24, 48, and 72 h of incubation. When the NHSF cells were exposed to UVB radiation in the presence of maqui extracts, their viability was increased or maintained. The maqui berry extracts had a slightly protective effect against skin damage caused by UVB radiation. These were preliminary studies that require further research to determine which maqui compounds correspond with the photoprotective activity.
Collapse
Affiliation(s)
- Marta Wacewicz-Muczyńska
- Department of Specialist Cosmetology, Medical University of Bialystok, Akademicka 3 St., 15-267 Bialystok, Poland
| | - Justyna Moskwa
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| | - Anna Puścion-Jakubik
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| | - Sylwia K Naliwajko
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Akademicka 3 St., 15-267 Bialystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D St., 15-222 Bialystok, Poland
| |
Collapse
|
4
|
A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia chilensis Stuntz (Maqui). Molecules 2022; 27:molecules27196147. [PMID: 36234679 PMCID: PMC9571323 DOI: 10.3390/molecules27196147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Some fruits and vegetables, rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, may inhibit platelet activation pathways and therefore reduce the risk of suffering from CVD when consumed regularly. Aristotelia chilensis Stuntz (Maqui) is a shrub or tree native to Chile with outstanding antioxidant activity, associated with its high content in anthocyanins, polyphenols, and flavonoids. Previous studies reveal different pharmacological properties for this berry, but its cardioprotective potential has been little studied. Despite having an abundant composition, and being rich in bioactive products with an antiplatelet role, there are few studies linking this berry with antiplatelet activity. This review summarizes and discusses relevant information on the cardioprotective potential of Maqui, based on its composition of bioactive compounds, mainly as a nutraceutical antiplatelet agent. Articles published between 2000 and 2022 in the following bibliographic databases were selected: PubMed, ScienceDirect, and Google Scholar. Our search revealed that Maqui is a promising cardiovascular target since extracts from this berry have direct effects on the reduction in cardiovascular risk factors (glucose index, obesity, diabetes, among others). Although studies on antiplatelet activity in this fruit are recent, its rich chemical composition clearly shows that the presence of chemical compounds (anthocyanins, flavonoids, phenolic acids, among others) with high antiplatelet potential can provide this berry with antiplatelet properties. These bioactive compounds have antiplatelet effects with multiple targets in the platelet, particularly, they have been related to the inhibition of thromboxane, thrombin, ADP, and GPVI receptors, or through the pathways by which these receptors stimulate platelet aggregation. Detailed studies are needed to clarify this gap in the literature, as well as to specifically evaluate the mechanism of action of Maqui extracts, due to the presence of phenolic compounds.
Collapse
|
5
|
Preventive Effect of Hippocampal Sparing on Cognitive Dysfunction of Patients Undergoing Whole-Brain Radiotherapy and Imaging Assessment of Hippocampal Volume Changes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4267673. [PMID: 35425838 PMCID: PMC9005304 DOI: 10.1155/2022/4267673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Objective Preventive effect of hippocampal sparing on cognitive dysfunction of patients undergoing whole-brain radiotherapy and imaging assessment of hippocampal volume changes. Methods Forty patients with brain metastases who attended Liaoning Cancer Hospital from January 2018 to December 2019 were identified as research subjects and were randomly divided into a control group and an experimental group, with 20 cases in each group. The control group was treated with whole-brain radiotherapy (WBRT), and the experimental group was treated with hippocampal sparing-WBRT (HS-WBRT). The Montreal Cognitive Assessment (MoCA) score, Eastern Cooperative Oncology Group (ECOG) score, cancer quality-of-life questionnaire (QLQ-C3O) score, hippocampal volume changes, and prognosis of the two groups were compared. Results The MoCA scores decreased in both groups at 3, 6, and 12 months after radiotherapy, with significantly higher scores in the experimental group than in the control group (P < 0.05). After radiotherapy, both groups had lower ECOG scores, with those in the experimental group being significantly lower than those in the control group (P < 0.05). After radiotherapy, the QLQ-C30 score was elevated in both groups, and that of the experimental group was significantly higher than that of the control group (P < 0.05). The experimental group outperformed the control group in terms of the prognosis (P < 0.05). The hippocampal volume of the control group was significantly smaller than that of the experimental group (P < 0.05). Conclusion The application of hippocampal sparing in patients receiving whole-brain radiotherapy is effective in preventing cognitive dysfunction, improving the quality of life and prognosis of patients, and avoiding shrinkage of hippocampal volume.
Collapse
|
6
|
Agulló V, González-Trujano ME, Hernandez-Leon A, Estrada-Camarena E, Pellicer F, García-Viguera C. Synergistic Interaction in the Analgesic-Like Effects of Maqui Berry and Citrus Is Antagonized by Sweeteners. Nutrients 2021; 13:nu13072466. [PMID: 34371971 PMCID: PMC8308574 DOI: 10.3390/nu13072466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Although physiologically pain has a protective function, in many diseases, it is one of the most prominent symptoms. Today, new trends are focused on finding more natural alternatives to conventional treatments to alleviate it. Thereby, the purpose of this investigation was to obtain preclinical data of the antinociceptive properties of a lyophilized obtained from a newly designed maqui-citrus beverage alone and added with different sweeteners. To achieve this objective, maqui berry and citrus pharmacological activity were studied separately, as well as the interaction of both ingredients. In addition, due to the controversy generated regarding the intake of sugars, related to different metabolic diseases, the influence of different sweeteners (stevia, sucralose, or sucrose) was studied to determine their possible influence on the bioactive compounds of this product. For the attainment of our goals, a pharmacological evaluation, using the 1% formalin test, a nociceptive pain model in mice, was performed by using a sub-efficacious dosage of Maqui (25 mg/kg, i.p.) alone and combined with citrus, and then compared with the effects obtained in the presence of the different sweeteners. As a result, the antinociceptive response of the maqui was synergized in the presence of citrus in the neurogenic and inflammatory phases of the formalin test. However, this response was partially or totally reduced in the presence of the sweeteners. Our study gives preclinical evidence that a combination of maqui and citrus might exert beneficial actions to relieve pain, whereas the presence of sweeteners could reduce or avoid it.
Collapse
Affiliation(s)
- Vicente Agulló
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
- Grupo Calidad, Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
- Correspondence: (M.E.G.-T.); (C.G.-V.)
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico;
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
| | - Cristina García-Viguera
- Grupo Calidad, Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
- Correspondence: (M.E.G.-T.); (C.G.-V.)
| |
Collapse
|
7
|
Agulló V, González-Trujano ME, Hernandez-Leon A, Estrada-Camarena E, Pellicer F, García-Viguera C. Antinociceptive effects of maqui-berry ( Aristotelia chilensis (Mol.) Stuntz). Int J Food Sci Nutr 2021; 72:947-955. [PMID: 33719824 DOI: 10.1080/09637486.2021.1895727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maqui-berry is characterised by presenting a high concentration of (poly)phenols, accounting anthocyanins (cyanidin and delphinidin) for over 85% of the total. These coloured flavonoids have demonstrated potential neurological activity, but the evidence of their antinociceptive properties is scarce. In order to cover this gap, different doses (suitable for human administration) of a maqui-berry powder (1.6% anthocyanin), using enteral and parenteral routes of administration, were compared at central and peripheral levels using a nociceptive pain model (formalin test) in mice. Gastric damage analysis as possible adverse effects of analgesic and anti-inflammatory drugs was also explored. Dose-antinociceptive response was confirmed using both routes of administration and in both neurogenic and inflammatory phases of the formalin test, without gastric damage. In conclusion, these preliminary data provide evidence of pharmacological properties of maqui-berry to alleviate nociceptive pain.
Collapse
Affiliation(s)
- Vicente Agulló
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México.,Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|