1
|
Yang J, Peng J, Liu G, Li F. Predictive value of the random forest model based on bioelectrical impedance analysis parameter trajectories for short-term prognosis in stroke patients. Eur J Med Res 2024; 29:382. [PMID: 39044281 PMCID: PMC11267791 DOI: 10.1186/s40001-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The short-term prognosis of stroke patients is mainly influenced by the severity of the primary disease at admission and the trend of disease development during the acute phase (1-7 days after admission). OBJECTIVE The aim of this study is to explore the relationship between the bioelectrical impedance analysis (BIA) parameter trajectories during the acute phase of stroke patients and their short-term prognosis, and to investigate the predictive value of the prediction model constructed using BIA parameter trajectories and clinical indicators at admission for short-term prognosis in stroke patients. METHODS A total of 162 stroke patients were prospectively enrolled, and their clinical indicators at admission and BIA parameters during the first 1-7 days of admission were collected. A Group-Based Trajectory Model (GBTM) was employed to identify different subgroups of longitudinal trajectories of BIA parameters during the first 1-7 days of admission in stroke patients. The random forest algorithm was applied to screen BIA parameter trajectories and clinical indicators with predictive value, construct prediction models, and perform model comparisons. The outcome measure was the Modified Rankin Scale (mRS) score at discharge. RESULTS PA in BIA parameters can be divided into four separate trajectory groups. The incidence of poor prognosis (mRS: 4-6) at discharge was significantly higher in the "Low PA Rapid Decline Group" (85.0%) than in the "High PA Stable Group " (33.3%) and in the "Medium PA Slow Decline Group "(29.5%) (all P < 0.05). In-hospital mortality was the highest in the "Low PA Rapid Decline Group" (60%) compared with the remaining trajectory groups (P < 0.05). Compared with the prediction model with only clinical indicators (Model 1), the prediction model with PA trajectories (Model 2) demonstrated higher predictive accuracy and efficacy. The area under the receiver operating characteristic curve (AUC) of Model 2 was 0.909 [95% CI 0.863, 0.956], integrated discrimination improvement index (IDI), 0.035 (P < 0.001), and net reclassification improvement (NRI), 0.175 (P = 0.031). CONCLUSION PA trajectories during the first 1-7 days of admission are associated with the short-term prognosis of stroke patients. PA trajectories have additional value in predicting the short-term prognosis of stroke patients.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingjing Peng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangwei Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
2
|
Yan W, He X, Wang G, Hu G, Cui B. Adipokine vaspin maintains angiogenesis and neurological function during cerebral ischemia-reperfusion via suppressing endoplasmic reticulum stress. Clin Hemorheol Microcirc 2024; 87:415-425. [PMID: 38517781 DOI: 10.3233/ch-232077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Visceral adipose tissue-derived serine protease inhibitor (vaspin) is an adipokine. It has been reported that decreased serum vaspin levels are significantly associated with stroke severity and prognosis. OBJECTIVE This article aims to explore the theoretical feasibility of vaspin supplementation for cerebral ischemia-reperfusion (I/R) injury. METHODS The I/R mouse models were constructed by the middle cerebral artery occlusion (MCAO) method, and the effects of vaspin on cerebral infarction, neurological function, angiogenesis and endoplasmic reticulum (ER) stress were explored. To verify the mediation of ER stress in the regulation of vaspin, human brain microvascular endothelial cells (HBMECs) were subjected to ER stress agonist tunicamycin in vitro. The impacts of vaspin and tunicamycin on oxygen glucose deprivation/ recovery (OGD/R)-induced cell viability, apoptosis, and angiogenesis were examined. RESULTS Vaspin inhibited blood-brain barrier breakdown and infarction occurred in the brain tissue of the I/R mice. Vaspin also enhanced cerebral neovascularization and reduced the apoptosis. Additional tunicamycin increased the apoptosis of HBMECs and inhibited angiogenesis, reversing the protective effect of vaspin on cells. CONCLUSION Together, this study reveals that vaspin supplementation reduces cerebral infarction and works against neurological dysfunction. It maintains the survival and angiogenesis capacity of HBMECs by inhibiting ER stress.
Collapse
Affiliation(s)
- Wentao Yan
- Department of Stroke, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Xiuhua He
- Department of Cardiovascular Medicine, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Guanjun Wang
- Department of Neurosurgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Guochao Hu
- Department of Stroke, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, China
| | - Bin Cui
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| |
Collapse
|
3
|
Chondrogianni M, Lambadiari V, Katsanos AH, Stefanou MI, Palaiodimou L, Triantafyllou AS, Karagiannis G, Konstantakos V, Ioakeimidis M, Triantafyllou S, Zompola C, Liantinioti C, Pappa A, Rizos I, Voumvourakis K, Tsivgoulis G, Boutati E. Omentin Is Independently Associated with Stroke Severity and Ipsilateral Carotid Artery Stenosis in Patients with Acute Cerebral Ischemia. J Clin Med 2021; 10:jcm10245797. [PMID: 34945092 PMCID: PMC8703878 DOI: 10.3390/jcm10245797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mounting evidence indicates an association between adipokines and inflammation-related atherosclerosis. Here, we sought to investigate the association of vaspin and omentin with clinical characteristics and outcomes of patients with acute cerebral ischemia (ACI). Consecutive ACI patients were evaluated within 24 h from symptom-onset. Stroke aetiology was classified using TOAST criteria. Adipokines were assayed using quantikine enzyme immunoassay commercially available kits. Stroke severity was assessed by NIHSS-score, and ipsilateral carotid stenosis (≥50% by NASCET criteria) by ultrasound and CT/MR angiography. Major cerebrovascular events were assessed at three months. We included 135 ACI patients (05 (78%) and 30 (22%) with acute ischemic stroke and transient ischemic attack, respectively; mean age ± SD: 59 ± 10 years; 68% men; median NIHSS-score: 3 (IQR:1–7)). Omentin was strongly correlated to admission stroke severity (Spearman rho coefficient: +0.303; p < 0.001). Patients with ipsilateral carotid stenosis had higher omentin levels compared to patients without stenosis (13.3 ± 8.9 ng/mL vs. 9.5 ± 5.5 ng/mL, p = 0.014). Increasing omentin levels were independently associated with higher stroke severity (linear regression coefficient = 0.290; 95%CI: 0.063–0.516; p = 0.002) and ipsilateral carotid stenosis (linear regression coefficient = 3.411; 95%CI: 0.194–6.628; p = 0.038). No association of vaspin with clinical characteristics and outcomes was found. Circulating omentin may represent a biomarker for the presence of atherosclerotic plaque, associated with higher stroke severity in ACI patients.
Collapse
Affiliation(s)
- Maria Chondrogianni
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Vaia Lambadiari
- Second Department of Internal Medicine, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.L.); (E.B.)
| | - Aristeidis H. Katsanos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
- Division of Neurology, McMaster University and Population Health Research Institute, Hamilton, ON L8S 3L8, Canada
| | - Maria Ioanna Stefanou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Alexandros Stavros Triantafyllou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Georgios Karagiannis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Vasileios Konstantakos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Michael Ioakeimidis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Sokratis Triantafyllou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Christina Zompola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Chryssa Liantinioti
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Alexandra Pappa
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Ioannis Rizos
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Konstantinos Voumvourakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.C.); (A.H.K.); (M.I.S.); (L.P.); (A.S.T.); (G.K.); (V.K.); (M.I.); (S.T.); (C.Z.); (C.L.); (A.P.); (K.V.)
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +30-6937178635; Fax: +30-2105832471
| | - Eleni Boutati
- Second Department of Internal Medicine, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.L.); (E.B.)
| |
Collapse
|