1
|
Rubio B, Pintado C, Mazuecos L, Benito M, Andrés A, Gallardo N. Central Actions of Leptin Induce an Atrophic Pattern and Improves Heart Function in Lean Normoleptinemic Rats via PPARβ/δ Activation. Biomolecules 2024; 14:1028. [PMID: 39199415 PMCID: PMC11352611 DOI: 10.3390/biom14081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Leptin, acting centrally or peripherally, has complex effects on cardiac remodeling and heart function. We previously reported that central leptin exerts an anti-hypertrophic effect in the heart via cardiac PPARβ/δ activation. Here, we assessed the impact of central leptin administration and PPARβ/δ inhibition on cardiac function. Various cardiac properties, including QRS duration, R wave amplitude, heart rate (HR), ejection fraction (EF), end-diastolic left ventricular mass (EDLVM), end-diastolic volume (EDV), and cardiac output (CO) were analyzed. Central leptin infusion increased cardiac PPARβ/δ protein content and decreased HR, QRS duration, and R wave amplitude. These changes induced by central leptin suggested a decrease in the ventricular wall growth, which was confirmed by MRI. In fact, the EDLVM was reduced by central leptin while increased in rats co-treated with leptin and GSK0660, a selective antagonist of PPARβ/δ activity. In summary, central leptin plays a dual role in cardiac health, potentially leading to ventricular atrophy and improving heart function when PPARβ/δ signaling is intact. The protective effects of leptin are lost by PPARβ/δ inhibition, underscoring the importance of this pathway. These findings highlight the therapeutic potential of targeting leptin and PPARβ/δ pathways to combat cardiac alterations and heart failure, particularly in the context of obesity.
Collapse
Affiliation(s)
- Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- Molecular Regulation of Heart Failure Research Group, National Cardiovascular Research Center Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain;
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Marina Benito
- ICTS Bioimagen Complutense (BioImaC), Universidad Complutense de Madrid, P°. de Juan XXIII 1, 28040 Madrid, Spain;
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
Cruciani-Guglielmacci C, Le Stunff H, Magnan C. Brain lipid sensing and the neural control of energy balance. Biochimie 2024; 223:159-165. [PMID: 38825062 DOI: 10.1016/j.biochi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
The central nervous system continuously detects circulating concentrations of lipids such as fatty acids and troglycerides. Once information has been detected, the central nervous system can in turn participate in the control of energy balance and blood sugar levels and in particular regulate the secretion and action of insulin. Neurons capable of detecting circulating lipid variations are located in the hypothalamus and in other regions such as the nucleus accumbens, the striatum or the hippocampus. An excess of lipids will have deleterious effects and may induce central lipotoxicity, in particular following local production of ceramides and the appearance of neuroinflammation which may lead to metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | | |
Collapse
|
3
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
4
|
Xu FR, Wei ZH, Xu XX, Zhang XG, Wei CJ, Qi XM, Li YH, Gao XL, Wu Y. The hypothalamic steroidogenic pathway mediates susceptibility to inflammation-evoked depression in female mice. J Neuroinflammation 2023; 20:293. [PMID: 38062440 PMCID: PMC10704691 DOI: 10.1186/s12974-023-02976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.
Collapse
Affiliation(s)
- Fu-Rong Xu
- Department of Nursing, The Second People's Hospital of Wuwei, Wuwei, 733000, China
| | - Zhen-Hong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Xia Xu
- Department of Nursing, People's Hospital of Wuwei, Wuwei, 733000, China
| | - Xiao-Gang Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chao-Jun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiao-Ming Qi
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yong-Hong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Xiao-Ling Gao
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, Fu Z, Fu X, Kaushal S, Dou Z, Han L. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. J Chromatogr A 2022; 1675:463176. [DOI: 10.1016/j.chroma.2022.463176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
|
6
|
Tibolone Pre-Treatment Ameliorates the Dysregulation of Protein Translation and Transport Generated by Palmitic Acid-Induced Lipotoxicity in Human Astrocytes: A Label-Free MS-Based Proteomics and Network Analysis. Int J Mol Sci 2022; 23:ijms23126454. [PMID: 35742897 PMCID: PMC9223656 DOI: 10.3390/ijms23126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Excessive accumulation and release of fatty acids (FAs) in adipose and non-adipose tissue are characteristic of obesity and are associated with the leading causes of death worldwide. Chronic exposure to high concentrations of FAs such as palmitic acid (pal) is a risk factor for developing different neurodegenerative diseases (NDs) through several mechanisms. In the brain, astrocytic dysregulation plays an essential role in detrimental processes like metabolic inflammatory state, oxidative stress, endoplasmic reticulum stress, and autophagy impairment. Evidence shows that tibolone, a synthetic steroid, induces neuroprotective effects, but its molecular mechanisms upon exposure to pal remain largely unknown. Due to the capacity of identifying changes in the whole data-set of proteins and their interaction allowing a deeper understanding, we used a proteomic approach on normal human astrocytes under supraphysiological levels of pal as a model to induce cytotoxicity, finding changes of expression in proteins related to translation, transport, autophagy, and apoptosis. Additionally, tibolone pre-treatment showed protective effects by restoring those same pal-altered processes and increasing the expression of proteins from cell survival processes. Interestingly, ARF3 and IPO7 were identified as relevant proteins, presenting a high weight in the protein-protein interaction network and significant differences in expression levels. These proteins are related to transport and translation processes, and their expression was restored by tibolone. This work suggests that the damage caused by pal in astrocytes simultaneously involves different mechanisms that the tibolone can partially revert, making tibolone interesting for further research to understand how to modulate these damages.
Collapse
|
7
|
Mazuecos L, Pintado C, Rubio B, Guisantes-Batán E, Andrés A, Gallardo N. Leptin, Acting at Central Level, Increases FGF21 Expression in White Adipose Tissue via PPARβ/δ. Int J Mol Sci 2021; 22:4624. [PMID: 33924880 PMCID: PMC8124190 DOI: 10.3390/ijms22094624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARβ/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARβ/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARβ/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARβ/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Blanca Rubio
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Eduardo Guisantes-Batán
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Antonio Andrés
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|