1
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
2
|
Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010-2020). Eur J Med Chem 2020; 208:112830. [PMID: 32992133 DOI: 10.1016/j.ejmech.2020.112830] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Podophyllotoxins and epipodophyllotoxins, possess excellent activity against both drug-sensitive and drug-resistant even multidrug-resistant cancer cells via inhibition of tubulin polymerization. Several podophyllotoxin/epipodophyllotoxin derivatives such as etoposide and teniposide have already been applied for cancer therapy, revealing their potential as putative anticancer drugs. Hybridization of podophyllotoxin/epipodophyllotoxin moiety with other anticancer pharmacophores is a promising strategy to develop novel drug candidates so as to overcome drug resistance and improve the specificity, and numerous of podophyllotoxin/epipodophyllotoxin hybrids exhibit excellent in vitro antiproliferative and in vivo anticancer potency. This review emphasizes the recent development of podophyllotoxin/epipodophyllotoxin hybrids with potential application for cancer therapy covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design as well as structure-activity relationships were also summarized.
Collapse
|
3
|
Yu X, Che Z, Xu H. Recent Advances in the Chemistry and Biology of Podophyllotoxins. Chemistry 2017; 23:4467-4526. [PMID: 27726183 DOI: 10.1002/chem.201602472] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/17/2023]
Abstract
Podophyllotoxin and its related aryltetralin cyclolignans belong to a family of important products that exhibit various biological properties (e.g., cytotoxic, insecticidal, antifungal, antiviral, anti-inflammatory, neurotoxic, immunosuppressive, antirheumatic, antioxidative, antispasmogenic, and hypolipidemic activities). This Review provides a survey of podophyllotoxin and its analogues isolated from plants. In particular, recent developments in the elegant total chemical synthesis, structural modifications, biosynthesis, and biotransformation of podophyllotoxin and its analogues are summarized. Moreover, a deoxypodophyllotoxin-based chemosensor for selective detection of mercury ion is described. In addition to the most active podophyllotoxin derivatives in each series against human cancer cell lines and insect pests listed in the tables, the structure-activity relationships of podophyllotoxin derivatives as cytotoxic and insecticidal agents are also outlined. Future prospects and further developments in this area are covered at the end of the Review. We believe that this Review will provide necessary information for synthetic, medicinal, and pesticidal chemistry researchers who are interested in the chemistry and biology of podophyllotoxins.
Collapse
Affiliation(s)
- Xiang Yu
- Research Institute of Pesticidal Design and Synthesis, College of Plant Protection/Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, P.R. China
| | - Zhiping Che
- Research Institute of Pesticidal Design and Synthesis, College of Plant Protection/Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, P.R. China
- College of Forestry, Henan University of Science and Technology, Luoyang, 471003, Henan Province, P. R. China
| | - Hui Xu
- Research Institute of Pesticidal Design and Synthesis, College of Plant Protection/Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, P.R. China
| |
Collapse
|
4
|
Chen C, Wang CC, Wang Z, Geng WY, Xu H, Song XM, Luo DQ. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:486-494. [PMID: 27123550 DOI: 10.1080/10286020.2015.1131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Podophyllotoxin and its synthetic derivatives are valuable medicinal agents that have antitumor, insecticidal, and antifungal properties. We previously synthesized a deoxypodophyllotoxin derivative with an opened D-ring (DPD) exhibiting potent insecticidal activity. This article was firstly performed to identify the cytotoxicity of DPD toward human cancer cell lines (SGC7901, HeLa, and A549) and normal cell line (HEK293T) using MTT assay. DPD showed potent cytotoxicity against human cancer lines (HeLa and A549) and less cytotoxicity against normal cell lines HEK293T. DPD could also induce the cell cycle arrest at G2/M phase in HeLa cells and significantly increase the phosphorylation (Tyr 15) of CDC2 leading to inactivation of CDC2. The effects of DPD on cellular microtubule networks were detected using immunofluorescence technique in HeLa cells. The immunofluorescence results showed DPD influenced the arrangement and organization of cellular microtubule networks in HeLa cells. Microtubules are long, hollow cylinders made up of polymerized tubulin dimers. Total microtubules were separated after DPD treatment. Western blot results showed that the free polymerized tubulin dimers were obviously increased after DPD treatment. DPD may be a good drug candidate with the therapeutic potential to human cancer by affecting microtubule polymerization.
Collapse
Affiliation(s)
- Chuan Chen
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Cui-Cui Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Zhong Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Wen-Yue Geng
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Hui Xu
- b Laboratory of Pharmaceutical Design & Synthesis , College of Sciences, Northwest A&F University , Yangling , China
| | - Xiao-Mei Song
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Du-Qiang Luo
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| |
Collapse
|
5
|
Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg Med Chem 2015; 23:1437-46. [PMID: 25744190 DOI: 10.1016/j.bmc.2015.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 11/22/2022]
Abstract
A series of perbutyrylated glycosides of podophyllotoxin and its derivatives were synthesized and evaluated for their antitumor activity in vitro. Most of them exhibit cytotoxic activity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using MTT assays. Among the synthesized compounds, epipodophyllotoxin α-d-galactopyranoside 8b, epipodophyllotoxin α-d-arabinopyranoside 8e, and podophyllotoxin β-d-glucopyranoside 11a show the highest potency of anticancer activity with their IC50 values ranging from 0.14 to 1.69μM. Structure activity relationship analysis indicates that the type of glycosidic linkage, the configuration at C-4 of the podophyllotoxin scaffold, and the substitution at 4'-position (OH vs OCH3) can all have significant effect on the potency of their anticancer activity. Several compounds are more active than the control drugs Etoposide and Cisplatin, suggesting their potential as anticancer agents for further development.
Collapse
|
6
|
Vélez C, Zayas B, Kumar A. Biological Activity of N-Hydroxyethyl-4-aza-2,3-didehydropodophyllotoxin Derivatives upon Colorectal Adenocarcinoma Cells. ACTA ACUST UNITED AC 2015; 4:1-11. [PMID: 25554737 PMCID: PMC4279218 DOI: 10.4236/ojmc.2014.41001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Etoposide is a chemotherapy drug derived from the natural lignin podophyllotoxin. Our novel generated Aza-podophyllotoxin compounds (AZP 8a & AZP 9a) are analogues of podophyllotoxin and were previously screened for anti-cancer activity through the NCI 60 cell line screening panel showing activity on various cell types including colon cancer. This study expands the toxicological screening by studying apoptosis and various hallmark events as part of the mechanism of action of these compounds on colon cancer cells. The COLO 205 cell line was selected and exposed to AZP to determine the IC50 doses at 24 hours treatment. Apoptosis hallmark events such as migration of phosphatidylserine (PS) to the cell membrane, DNA fragmentation, cell cycle effects, mitochondrial membrane permeabilization and caspase activation were included. Experiments were performed in triplicates for all tested compounds including AZP 8a, AZP 9a, camptothecin as positive control and vehicle as negative control. Our results present contrasting apoptotic activity between the experimental compounds. Compound 8a presented migration of PS (annexin V assay), DNA fragmentation and cell cycle arrest at S phase. Compound 9a presented PS migration with fragmented DNA, cell cycle arrest at S phase, mitochondrial membrane permeabilization and activation of caspase 3, 8 and 9. Compound 8a without the oxygen atoms in ring A appears to cause effects similarly to autophagy as induced by etoposide, a cancer drug analogue of our heterocyclic compounds. Compound 9a with the oxygen atoms in expanded ring A presented induction of cell death following activation of a classical apoptosis pathway. Our results suggest that minor structural differences among these AZP can account for the difference in biological response and cancer cell toxicity.
Collapse
Affiliation(s)
- Christian Vélez
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| | - Beatriz Zayas
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| | - Ajay Kumar
- Universidad Metropolitana, School of Environmental Affairs San Juan, Puerto Rico, USA
| |
Collapse
|