1
|
Du S, Wang H, Li J, Huang W, Jiang X, Cui E, Du L, Wang Y. Design and synthesis of 9-phenanthranilamide derivatives and the study of anti-inflammatory, antioxidant and neuroprotective activities. Bioorg Chem 2023; 141:106861. [PMID: 37778192 DOI: 10.1016/j.bioorg.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/19/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Oxidative stress and a series of excessive inflammatory responses are major obstacles to neurological functional recovery after ischemic stroke. In this study, we synthesized several novel 9-phenanthranilamide derivatives and evaluated their anti-inflammatory and antioxidant activities. Among the initially screened compounds, most could strongly inhibi lipopolysaccharide (LPS)-stimulated production of IL-1β, IL-6 and TNF-α in microglial cells. Additionally, compounds 8b, 8q, 8r and 8s significantly inhibited the production of NO, and they also had dose-dependent protective effects on PC12 neuronal cells induced by H2O2. The antineuroinflammatory effects of 8r and 8s were associated with the downregulation of LPS-induced inflammatory mediators of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and both compounds inhibited the NF-κB signaling pathway. Further examinations showed that 8s had a significant neuroprotective effect on rats with middle cerebral artery occlusion (MCAO). It decreased the infarct volume and the neurological deficit score. Overall, our results suggested that compound 8s might be a promising agent for stroke treatment.
Collapse
Affiliation(s)
- Shuaishuai Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Hongwei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiaming Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Weijun Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Xueyang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Enjing Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Le Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Luduvico KP, Spohr L, de Aguiar MSS, Teixeira FC, Bona NP, de Mello JE, Spanevello RM, Stefanello FM. LPS-induced impairment of Na +/K +-ATPase activity: ameliorative effect of tannic acid in mice. Metab Brain Dis 2022; 37:2133-2140. [PMID: 35759073 DOI: 10.1007/s11011-022-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Acetylcholine is an excitatory neurotransmitter that modulates synaptic plasticity and communication, and it is essential for learning and memory processes. This neurotransmitter is hydrolyzed by acetylcholinesterase (AChE), which plays other cellular roles in processes such as inflammation and oxidative stress. Ion pumps, such as Na+/K+-ATPase and Ca2+-ATPase, are highly expressed channels that derive energy for their functions from ATP hydrolysis. Impairment of the cholinergic system and ion pumps is associated with neuropsychiatric diseases. Major depressive disorder (MDD) is an example of a complex disease with high morbidity and a heterogenous etiology. Polyphenols have been investigated for their therapeutic effects, and tannic acid (TA) has been reported to show neuroprotective and antidepressant-like activities. Animal models of depression-like behavior, such as lipopolysaccharide (LPS)-induced models of depression, are useful for investigating the pathophysiology of MDD. In this context, effects of TA were evaluated in an LPS-induced mouse model of depression-like behavior. Animals received TA for 7 days, and on the last day of treatment, LPS (830 μg/kg) was administered intraperitoneally. In vitro exposure of healthy brain to TA decreased the AChE activity. Additionally, this enzyme activity was decreased in cerebral cortex of LPS-treated mice. LPS injection increased the activity of Ca2+-ATPase in the cerebral cortex but decreased the enzyme activity in the hippocampus. LPS administration decreased Na+/K+-ATPase activity in the cerebral cortex, hippocampus, and striatum; however, TA administration prevented these changes. In conclusion, tannins may affect Na+/K+-ATPase and Ca2+-ATPase activities, which is interesting in the context of MDD.
Collapse
Affiliation(s)
- Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
3
|
Wan Yaacob WMH, Long I, Zakaria R, Othman Z. Tualang honey and its methanolic fraction ameliorate lipopolysaccharide-induced oxidative stress, amyloid deposition and neuronal loss of the rat hippocampus. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00449-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Cui C, Chen R, Jiang J, Liu R, Wang W, Zhao Q, Hu P. Simultaneous determination of FLZ and its metabolite (M1) in human plasma and urine by UHPLC-MS/MS: Application to a pharmacokinetic study. J Pharm Biomed Anal 2019; 164:32-40. [PMID: 30342394 DOI: 10.1016/j.jpba.2018.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022]
Abstract
FLZ is a novel anti-Parkinson's disease candidate drug. The main active metabolite is FLZ O-dealkylation (M1) in preclinical studies. A reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) quantitation method was developed for the simultaneous determination of FLZ and M1 with low limits of quantitation in human plasma (0.1 ng/mL) and urine (0.5 ng/mL). The plasma and urine samples were both purified by full-automatic solid phase extraction (SPE) method with ensured high extraction recovery and little matrix effect for both analytes, and then separated on a BEH C18 column (2.1 × 50 mm, 1.7 μm). Detection and quantification were performed using an electrospray ionization (ESI) source in positive mode by multiple reaction monitoring (MRM). The precursor to product ion transitions were monitored at m/z 450.3+→313.2+ for FLZ, m/z 436.3+→299.1+ for M1, m/z 462.6+→142.0+ for [D12]-FLZ (internal standard of FLZ) and m/z 447.2+→125.2+ for [D11]-M1 (internal standard of M1), respectively. This method showed good linearity, accuracy, precision and stability in the range of 0.1-100 ng/mL in plasma and 0.5-500 ng/mL in urine of two analytes. Finally, the developed method was successfully applied to a pharmacokinetic research in Chinese healthy volunteers after oral administration of FLZ tablets.
Collapse
Affiliation(s)
- Cheng Cui
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, PR China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, PR China
| | - Rui Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, PR China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, PR China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, PR China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, PR China
| | - Rui Liu
- Hebei Yiling Pharmaceutical Co., Ltd., Hebei, 050035, PR China
| | - Wei Wang
- Hebei Yiling Pharmaceutical Co., Ltd., Hebei, 050035, PR China
| | - Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, PR China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, PR China.
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, PR China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, PR China.
| |
Collapse
|
5
|
Srinivasan M, Lahiri N, Thyagarajan A, Witek E, Hickman D, Lahiri DK. Nuclear factor-kappa B: Glucocorticoid-induced leucine zipper interface analogs suppress pathology in an Alzheimer's disease model. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:488-498. [PMID: 30338290 PMCID: PMC6186959 DOI: 10.1016/j.trci.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoid-induced leucine zipper is a regulatory protein that sequesters activated nuclear factor-kappa B p65. Previously, we showed that rationally designed analogs of the p65-binding domain of glucocorticoid-induced leucine zipper, referred to as glucocorticoid-induced leucine zipper analogs (GAs), inhibited amyloid β-induced metabolic activity and inflammatory cytokines in mixed brain cell cultures. Here, we investigate the therapeutic efficacy of GA in an Alzheimer's disease model. METHODS GA and control peptides were synthesized covalently as peptide amides with the cell-penetrating agent. C57Bl/6J mice induced with lipopolysaccharide-mediated neuroinflammation (250 mg/kg i.p/day for six days) were treated on alternate days with GA-1, GA-2, or control peptides (25 mg/kg i.v). Brain tissues were assessed for gliosis, cytokines, and antiapoptotic factors. RESULTS The brain tissues of GA-1- and GA-2-treated mice exhibited significantly reduced gliosis, suppressed inflammatory cytokines, and elevated antiapoptotic factors. DISCUSSION The antineuroinflammatory effects of GA suggest potential therapeutic application for Alzheimer's disease.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Niloy Lahiri
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Anish Thyagarajan
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Emily Witek
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debra Hickman
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
6
|
Khallaf WA, Messiha BA, Abo-Youssef AM, El-Sayed NS. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor. Can J Physiol Pharmacol 2017; 95:850-860. [DOI: 10.1139/cjpp-2017-0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Waleed A.I. Khallaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Basim A.S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Amira M.H. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Nesrine S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Bronzuoli MR, Iacomino A, Steardo L, Scuderi C. Targeting neuroinflammation in Alzheimer's disease. J Inflamm Res 2016; 9:199-208. [PMID: 27843334 PMCID: PMC5098782 DOI: 10.2147/jir.s86958] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Almost 47 million people suffer from dementia worldwide, with an estimated new case diagnosed every 3.2 seconds. Alzheimer’s disease (AD) accounts for approximately 60%–80% of all dementia cases. Given this evidence, it is clear dementia represents one of the greatest global public health challenges. Currently used drugs alleviate the symptoms of AD but do not treat the underlying causes of dementia. Hence, a worldwide quest is under way to find new treatments to stop, slow, or even prevent AD. Besides the classic targets of the oldest therapies, represented by cholinergic and glutamatergic systems, β-amyloid (Aβ) plaques, and tau tangles, new therapeutic approaches have other targets. One of the newest and most promising strategies is the control of reactive gliosis, a multicellular response to brain injury. This phenomenon occurs as a consequence of a persistent glial activation, which leads to cellular dysfunctions and neuroinflammation. Reactive gliosis is now considered a key abnormality in the AD brain. It has been demonstrated that reactive astrocytes surround both Aβ plaques and tau tangles. In this condition, glial cells lose some of their homeostatic functions and acquire a proinflammatory phenotype amplifying neuronal damage. So, molecules that are able to restore their physiological functions and control the neuroinflammatory process offer new therapeutic opportunities for this devastating disease. In this review, we describe the role of neuroinflammation in the AD pathogenesis and progression and then provide an overview of the recent research with the aim of developing new therapies to treat this disorder.
Collapse
Affiliation(s)
- Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome "G. Marconi", Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Ali MRAA, Abo-Youssef AMH, Messiha BAS, Khattab MM. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:637-56. [DOI: 10.1007/s00210-016-1234-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
|