1
|
Wang X, Dongzhi Z, Li Y, Xie M, Li X, Yuan R, Li B, Panichayupakaranant P, Huang S. <i>Ajania purpurea</i> Extract Attenuates LPS-Induced Inflammation in RAW264.7 Cells and Peritonitis Mice. Biol Pharm Bull 2022; 45:1847-1852. [DOI: 10.1248/bpb.b22-00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Xiangyu Wang
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science & Technology
| | - Zhuoma Dongzhi
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University
| | - Yan Li
- Yanji Traditional Chinese Medicine Hospital
| | - Mi Xie
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science & Technology
| | - Xinyu Li
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science & Technology
| | - Ruiying Yuan
- Department of pharmacy, College of Medicine, Tibet University
| | - Bin Li
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science & Technology
| | | | - Shan Huang
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science & Technology
| |
Collapse
|
2
|
Han C, Zhou S, Mei Y, Cao Q, Shi K, Shao H. Phytotoxic, insecticidal, and antimicrobial activities of Ajania tibetica essential oil. FRONTIERS IN PLANT SCIENCE 2022; 13:1028252. [PMID: 36466289 PMCID: PMC9716211 DOI: 10.3389/fpls.2022.1028252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 05/06/2023]
Abstract
The chemical profile of Ajania tibetica essential oil (EO) and its phytotoxic, insecticidal, and antimicrobial activities were assessed. Monoterpenes (79.05%) and sesquiterpenes (10.33%) were dominant in the EO, with camphor, (+/-)-lavandulol and eucalyptol being the major constituents, representing 55.06% of the total EO. The EO possessed potent phytotoxicity against Poa annua and Medicago sativa starting from 0.5 mg/mL, and when the concentration rose to 5 mg/mL, seed germination of both tested species was 100% suppressed. Ajania tibetica EO displayed significant pesticidal activity against Aphis gossypii with an LC50 value of 17.41 μg/mL; meanwhile, the EO also showed antimicrobial activity against Escherichia coli, Bacillus subtilis, Verticillium dahlia and Aspergillus niger using broth microdilution and disc diffusion methods. For the tested bacterial and fungal strains, the EO exhibited a repressing effect, with minimum inhibitory concentrations (MICs) ranging from 0.3125 to 1.25 mg/mL for bacteria and from 1.25 to 2.5 mg/mL for fungi, whereas the minimum microbicidal concentrations (MMCs) were 5 mg/mL for bacteria and 2.5 mg/mL for fungi. Our study is the first report on the chemical profile as well as the phytotoxicity, insecticidal and antimicrobic activity of A. tibetica EO, indicating its potential value as an alternative synthetic pesticide.
Collapse
Affiliation(s)
- Caixia Han
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shixing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Mei
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Qiumei Cao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Kai Shi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
3
|
Chemical Constituents of the Whole Plant of Ajania tenuifolia. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Echiburu-Chau C, Pastén L, Parra C, Bórquez J, Mocan A, Simirgiotis MJ. High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen). Saudi Pharm J 2017; 25:1032-1039. [PMID: 29158712 PMCID: PMC5681312 DOI: 10.1016/j.jsps.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
High-resolution mass spectrometry is currently used to determine the mass of biologically active compounds in medicinal plants and food and UHPLC-Orbitrap is a relatively new technology that allows fast fingerprinting and metabolomics analysis. Forty-two metabolites including several phenolic acids, flavonoids, coumarines, tremetones and ent-clerodane diterpenes were accurately identified for the first time in the resin of the medicinal plant Parastrephia lucida (Asteraceae) a Chilean native species, commonly called umatola, collected in the pre-cordillera and altiplano regions of northern Chile, by means of UHPLC-PDA-HR-MS. This could be possible by the state of the art technology employed, which allowed well resolved total ion current peaks and the proposal of some biosynthetic relationships between the compounds detected. Some mayor compounds were also isolated using HSCCC. The ethanolic extract showed high total polyphenols content and significant antioxidant capacity. Furthermore, several biological assays were performed that determined the high antioxidant capacity found for the mayor compound isolated from the plant, 11- p-coumaroyloxyltremetone.
Collapse
Affiliation(s)
- Carlos Echiburu-Chau
- Centro de Investigaciones del Hombre en el Desierto (CIHDE), Av. General Velásquez, 1775, Edificio CIHDE, Piso 2, Arica, Chile.,Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Leyla Pastén
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
| | - Claudio Parra
- Centro de Investigaciones del Hombre en el Desierto (CIHDE), Av. General Velásquez, 1775, Edificio CIHDE, Piso 2, Arica, Chile.,Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 23 Ghe. Marinescu Street, Cluj-Napoca 400010, Romania
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile
| |
Collapse
|
5
|
|
6
|
|