1
|
Asokan K, Hussain AZ, Gattu RK, Ilangovan A. Minor limonoid constituents from Swietenia macrophylla by simultaneous isolation using supercritical fluid chromatography and their biological activities. RSC Adv 2024; 14:26637-26647. [PMID: 39175675 PMCID: PMC11339773 DOI: 10.1039/d4ra03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
This study reports simultaneous isolation of three new limonoids (1-3), six known regio isomers (6, 7, 9-12), and three more known limonoids (4, 5, 8) from Swietenia macrophylla (S. macrophylla) seeds. Structures of these compounds were determined via extensive study of their 1D/2D-NMR and mass spectral data. Known limonoids (4-12) were identified by comparing their physical and spectroscopic data with literature values. A novel environmentally friendly supercritical fluid chromatography (SFC) technique facilitated simultaneous and rapid separation of these compounds. The pharmacological activities of the new limonoids were investigated.
Collapse
Affiliation(s)
- Kathiravan Asokan
- Aragen Life Sciences Pvt Ltd Bengaluru-562106 India
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | - A Zahir Hussain
- Department of Chemistry, Jamal Mohamed College Tiruchirappalli Tamilnadu-620020 India
| | | | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| |
Collapse
|
2
|
Bailly C. Limonoids isolated from Chisocheton ceramicus Miq. and the antiadipogenic mechanism of action of ceramicine B. Arch Pharm (Weinheim) 2024; 357:e2400160. [PMID: 38678480 DOI: 10.1002/ardp.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Different types of limonoids have been isolated from plants of the Chisocheton genus, notably from the species Chisocheton ceramicus Miq. which is largely distributed in the Indonesian archipelago and Malaysia region. A variety of natural products have been found in the bark of the tree and characterized as antimicrobial and/or antiproliferative agents. The isolated limonoids include chisomicines A-E, proceranolide, and a few other compounds. A focus is made on a large series of limonoids designated ceramicines A to Z including derivatives with antiparasitic activities, antioxidant, antimelanogenic, and antiproliferative effects and/or acting as regulators of lipogenesis. The lead compound in the series is ceramicine B functioning as a potent inhibitor of lipid droplet accumulation (LDA). Extracts from Chisocheton ceramicus and ceramicines have shown anti-LDA effects, with little or no cytotoxic effects. Ceramicine B is the most active compound functioning as a regulator of lipid storage in cells and tissues. Ceramicine B is a transcriptional repressor of peroxisome proliferator-activated receptor γ (PPARγ) and an inhibitor of phosphorylation of the transcription factor FoxO1, acting via an upstream molecular target. Targeting of glycogen synthase kinase-3β is proposed, based on the analogy with structurally related limonoids known to target this enzyme, and supported by a molecular docking analysis. The target and pathway implicated in ceramicine B activity are discussed. The analysis shed light on ceramicine B as a natural product precursor for the design of novel compounds capable of reducing LDA in cells and of potential interest for the treatment of obesity, liver diseases, and other pathologies.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Lille, France
- OncoWitan, Scientific Consulting Office, Lille, France
| |
Collapse
|
3
|
Pal PC, Nag S, Jyothi D, Das S, Saha KD, Singh UP. Swietenolide isolated from Swietenia macrophylla King in Hook seeds shows in vitro anti-colorectal cancer activity through inhibition of mouse double minute 2 (MDM2) homolog. Nat Prod Res 2024; 38:2097-2104. [PMID: 37450037 DOI: 10.1080/14786419.2023.2233045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Swietenia macrophylla King in Hook (SM) is known to have several medicinal properties. Chloroform extracts of SM seeds (SMCE) as well as two isolated limonoids swietenine (1) and swietenolide (2) showed significant in vitro anti-CRC activity in human colon carcinoma (HCT116) cell line. 2 (IC50 = 5.6 µM) was found to be two times more potent than 1 (IC50 = 10 µM). Both compounds showed anti-CRC activity through inhibition of the Mouse Double Minute 2 homolog (MDM2) of the MDM2-p53 pathway. The Selectivity Index (S.I.) of isolated compounds 1 and 2 for cancer cells were about 6.6 and 12.8 fold respectively which was significantly better than the S.I. of the extract (S.I. ∼1.5).
Collapse
Affiliation(s)
- Purna Chandra Pal
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Sayoni Nag
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research- Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Deeti Jyothi
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research- Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Sudesna Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research- Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research- Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Umesh Prasad Singh
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research- Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Reis JDE, Gomes PWP, Sá PRDC, Pamplona SDGSR, Silva CYYE, da Silva MFDGF, Bishayee A, da Silva MN. Putative Identification of New Phragmaline-Type Limonoids from the Leaves of Swietenia macrophylla King: A Case Study Using Mass Spectrometry-Based Molecular Networking. Molecules 2023; 28:7603. [PMID: 38005325 PMCID: PMC10673509 DOI: 10.3390/molecules28227603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
Swietenia macrophylla King is a plant commonly known as Brazilian mahogany. The wood from its stem is highly prized for its exceptional quality, while its leaves are valued for their high content of phragmalin-type limonoids, a subclass of compounds known for their significant biological activities, including antimalarial, antitumor, antiviral, and anti-inflammatory properties. In this context, twelve isolated limonoids from S. macrophylla leaves were employed as standards in mass spectrometry-based molecular networking to unveil new potential mass spectrometry signatures for phragmalin-type limonoids. Consequently, ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was utilized for data acquisition. Subsequently, the obtained data were analyzed using the Global Natural Products Social Molecular Networking platform based on spectral similarity. In summary, this study identified 24 new putative phragmalin-type limonoids for the first time in S. macrophylla. These compounds may prove valuable in guiding future drug development efforts, leveraging the already established biological activities associated with limonoids.
Collapse
Affiliation(s)
- José Diogo E. Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil; (J.D.E.R.); (S.d.G.S.R.P.); (C.Y.Y.e.S.)
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Paulo Wender P. Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Paulo R. da C. Sá
- Federal Institute of Pará, Campus Castanhal, Castanhal 68740-970, Brazil;
| | - Sônia das G. S. R. Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil; (J.D.E.R.); (S.d.G.S.R.P.); (C.Y.Y.e.S.)
| | - Consuelo Yumiko Y. e Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil; (J.D.E.R.); (S.d.G.S.R.P.); (C.Y.Y.e.S.)
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 16509, USA;
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil; (J.D.E.R.); (S.d.G.S.R.P.); (C.Y.Y.e.S.)
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
5
|
Mahendra CK, Ser HL, Abidin SAZ, Khan SU, Pusparajah P, Htar TT, Chuah LH, Tang SY, Ming LC, Goh KW, Kumari Y, Goh BH. The anti-melanogenic properties of Swietenia macrophylla king. Biomed Pharmacother 2023; 162:114659. [PMID: 37068335 DOI: 10.1016/j.biopha.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shafi Ullah Khan
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd, Hattar Industrial Estate, 22610, Haripur, KPK, Pakistan
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia; Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Long Chiau Ming
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Khang Wen Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
6
|
Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell lines by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Luo J, Sun Y, Li Q, Kong L. Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 2022; 39:1325-1365. [PMID: 35608367 DOI: 10.1039/d2np00015f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: July 2010 to December 2021Limonoids, a kind of natural tetranortriterpenoids with diverse skeletons and valuable insecticidal and medicinal bioactivities, are the characteristic metabolites of most plants of the Meliaceae family. The chemistry and bioactivities of meliaceous limonoids are a continuing hot area of natural products research; to date, about 2700 meliaceous limonoids have been identified. In particular, more than 1600, including thirty kinds of novel rearranged skeletons, have been isolated and identified in the past decade due to their wide distribution and abundant content in Meliaceae plants and active biosynthetic pathways. In addition to the discovery of new structures, many positive medicinal bioactivities of meliaceous limonoids have been investigated, and extensive achievements regarding the chemical and biological synthesis have been made. This review summarizes the recent research progress in the discovery of new structures, medicinal and agricultural bioactivities, and chem/biosynthesis of limonoids from the plants of the Meliaceae family during the past decade, with an emphasis on the discovery of limonoids with novel skeletons, the medicinal bioactivities and mechanisms, and chemical synthesis. The structures, origins, and bioactivities of other new limonoids were provided as ESI. Studies published from July 2010 to December 2021 are reviewed, and 482 references are cited.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
8
|
Mahendra CK, Goh KW, Ming LC, Zengin G, Low LE, Ser HL, Goh BH. The Prospects of Swietenia macrophylla King in Skin Care. Antioxidants (Basel) 2022; 11:antiox11050913. [PMID: 35624777 PMCID: PMC9137607 DOI: 10.3390/antiox11050913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered “natural” and “green” in the public’s eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential “cosmetic-worthy” bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the “ageless” beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (L.C.M.); (B.H.G.)
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia;
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (L.C.M.); (B.H.G.)
| |
Collapse
|
9
|
Duan JY, Wang YJ, Chen W, Zhao YQ, Bai ZH, He LL, Zhang CP. Limonoids isolated from fruits of Swietenia macrophylla king enhance glucose consumption in insulin-resistant HepG2 cells via activating PPARγ. J Food Biochem 2021; 45:e13668. [PMID: 33605461 DOI: 10.1111/jfbc.13668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022]
Abstract
The fruits of Swietenia macrophylla King have been processed commercially to a variety of health foods and healthcare products and exhibited antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. This study was aimed to examine the glucose consumption in human hepatoma HepG2 cells and the expression of PPARγ of limonoids isolated from the fruits of S. macrophylla. The phytochemical investigation of the fruits led to the isolation of ten limonoids which structures were elucidated by spectroscopic analysis as swietenine (1), khayasin T (2), 6-deoxyswietenine (3), 3-O-tigloylswietenolide (4), swietenolide (5), 3,6-O,O-diacetylswietenolide (6), 7-deacetoxy-7-oxogedunin (7), fissinolide (8), proceranolide (9), 7-deacetoxy-7α-hydroxygedunin (10), and compound 10 was isolated from this plant for the first time. The glucose consumption assay revealed that compounds 1, 2, 3, 5, and 9 could promote glucose consumption significantly in normal hyperglycemia-induced HepG2 cells, furthermore, compounds 1, 5, and 9 had a better effect on promoting glucose consumption in insulin-resistant HepG2 cells. In addition, compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells according to the western blotting analysis result. PRACTICAL APPLICATIONS: Swietenia macrophylla King belongs to the family Meliaceae and the fruits have been exhibited a wide range of biological activities, such as antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. Phytochemical investigations of S. macrophylla have revealed that limonoids and triterpenoids were effective antidiabetic agents. However, the mechanism of these limonoids to antidiabetic activity is unclear. In this study, limonoids were isolated from the fruit of S. macrophylla and their effects on the glucose consumption of insulin-resistant HepG2 cells were studied. The results showed that compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells, which will give aid to explore the mechanism of these limonoids in the treatment of type 2 diabetes. Therefore, this research might facilitate further research and development of S. macrophylla.
Collapse
Affiliation(s)
- Jing-Yu Duan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yong-Jian Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yang-Qi Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhong-Hui Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang-Liang He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chun-Ping Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Shi Z, An L, Yang X, Xi Y, Zhang C, Shuo Y, Zhang J, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y. Nitric oxide inhibitory limonoids as potential anti-neuroinflammatory agents from Swietenia mahagoni. Bioorg Chem 2019; 84:177-185. [DOI: 10.1016/j.bioorg.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/28/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
|
11
|
Sun YP, Jin WF, Wang YY, Wang G, Morris-Natschke SL, Liu JS, Wang GK, Lee KH. Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae). Molecules 2018; 23:E1588. [PMID: 29966275 PMCID: PMC6099683 DOI: 10.3390/molecules23071588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022] Open
Abstract
Swietenia is a genus in the plant family Meliaceae. This genus contains seven to eight known species, found in the tropical and subtropical regions of the Americas and West Africa. Thus far, more than 160 limonoids have been isolated from four species of the genus Swietenia. Limonoids are rich in structure type and biological activity, and these compounds are the main active components in the Swietenia species. This paper will give a comprehensive overview of the recent phytochemical and pharmacological research on the terpenes from Swietenia plants and encourage further drug discovery research.
Collapse
Affiliation(s)
- Yun-Peng Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wen-Fang Jin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yong-Yue Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Gang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan.
| |
Collapse
|