1
|
Zhang H, You Y, Xu J, Jiang H, Jiang J, Su Z, Chao Z, Du Q, He F. New sesquiterpenes and viridin derivatives from Penicillium sp. Ameliorates NAFLD by regulating the PINK1/Parkin mitophagy pathway. Bioorg Chem 2024; 151:107656. [PMID: 39047333 DOI: 10.1016/j.bioorg.2024.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Fungi from the plant rhizosphere microbiome are considered an important source of bioactive novel natural compounds. In this study, three new sesquiterpenes, penisterpenoids A-C (1-3), and three new viridin derivatives, peniviridiols A-C (4-6), along with twenty one known compounds (7-27), were isolated from the rhizosphere fungus Penicillium sp. SMU0102 of medicinal plant Bupleurum chinense DC. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1-6 were determined by experimental and calculated ECD spectra, DP4 + probability analysis, modified Mosher's method, and X-ray crystallography. All new compounds were screened for their cytotoxic and lipid-lowering activities in vitro. Among them, compound 1 (20 μM) remarkably alleviated lipid accumulation both in FFA-induced LO2 cells and TAA-induced zebrafish NAFLD models. Furthermore, compound 1 enhanced ATP production and mitochondrial membrane potential (MMP), suppressed reactive oxygen species (ROS) formation, restored mitochondrial structure, and induced autophagosome formation. Moreover, compound 1 significantly upregulated the expression of representative proteins for the mitochondrial homeostasis, including OPA1, DRP1, MFF, and Fis1, as well as mitophagy representative proteins PINK1, Parkin, and P62. Further mechanistic investigations indicated that compound 1 primarily alleviated lipid accumulation through selective activation of the PINK1/Parkin mitophagy signaling pathway.
Collapse
Affiliation(s)
- Hang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haimei Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Zijie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
2
|
Khan T, Hou DH, Zhou JN, Yang YL, Yu H. Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation. MYCOBIOLOGY 2023; 51:157-163. [PMID: 37359952 PMCID: PMC10288913 DOI: 10.1080/12298093.2023.2216924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 °C, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 °C, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.
Collapse
Affiliation(s)
- Tahir Khan
- College of Life Sciences, Yunnan University, Kunming, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan, China
| | - Dong-Hai Hou
- College of Life Sciences, Yunnan University, Kunming, Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan, China
| | - Jin-Na Zhou
- College of Science, Tibet University, Lhasa, China
| | - Yin-Long Yang
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan, China
| | - Hong Yu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Liang Y, Li D, Zheng Y, Shen Y, Li Q, Wei M, Yang H, Ye S, Chen C, Zhu H, Zhang Y. Virenscarotins A-M, thirteen undescribed carotane sesquiterpenes from the fungus Trichoderma virens. PHYTOCHEMISTRY 2022; 203:113368. [PMID: 35977601 DOI: 10.1016/j.phytochem.2022.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A document investigation on the fungus Trichoderma virens led to the isolation of thirteen undescribed carotane sesquiterpenes and homologous. All structures were elucidated on the basis of NMR and HRESIMS data, and their absolute configurations were assigned by ECD calculation. Especially, virenscarotins A and B were first ramifications forged by aldol condensation of 4-hydroxy-3-isopentenyl-benzaldehyde with two hydroxyl groups in ring A of traditional carotane sesquiterpenes. Ring rearrangement/expansion and oxidative cleavage of normal carotane sesquiterpenes lead to the six-membered ring A of compound virenscarotin C and the ring A cleavage of compound virenscarotin D. All compounds were evaluated for cytotoxic, anti-inflammatory, and seed germination inhibitory activities.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Dongyan Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Diseaserelated Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Saiyi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Wei J, Zhou X, Dong M, Yang L, Zhao C, Lu R, Bao G, Hu F. Metabolites and novel compounds with anti-microbial or antiaging activities from Cordyceps fumosorosea. AMB Express 2022; 12:40. [PMID: 35366116 PMCID: PMC8976864 DOI: 10.1186/s13568-022-01379-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
High-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) analysis revealed that there are 20 main components in spores and mycelia extract of Cordyceps fumosorosea strain RCEF 6672 including mannitol (1), uridine (2), adenine (3). N6-(2-hydroxyethyl)-adenosine (4). N6-(2-hydroxyethylacetate)-adenosine (5), fumosoroseanoside A (6) and B (7), ovalicin-4α-alcohol (8), 1-linoleoyl-sn-glycero-3-phosphocholine (9) and its isomer (10), fumosoroseain A (11) and its isomer (12), 5 non-ribosomal peptides (13 to 17) and 3 fatty acids (18 to 20). The compounds 5, 6, 7, 9 and 11 were prepared with preparative and semi-preparative HPLC and identified with 1D and 2D NMR. Compounds 4 and 5 were the first time identified from C. fumosorosea. Compounds 6, 7 and 11 are novel compounds. Compounds 6 and 7 showed antibacterial and antifungal activities, and 11 showed antiaging activity. All the secondary metabolites (4 to 8 and 11 to 17) have strong bioactivities indicating that the metabolites have pharmaceutical development potentiality.
Clarified small molecular metabolites of C. fumosorosea for the first time.
Identified three novel compounds with antimicrobial or antiaging activities. The fungus has development potentiality for rich in bioactive metabolites.
Collapse
|
5
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
6
|
Takahashi JA, Barbosa BVR, Martins BDA, P. Guirlanda C, A. F. Moura M. Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability. J Fungi (Basel) 2020; 6:E223. [PMID: 33076336 PMCID: PMC7711925 DOI: 10.3390/jof6040223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 01/27/2023] Open
Abstract
Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development of additives and nutraceutical products of natural origin. Fungi produce several metabolites with bioactivity against NTCD as well as pigments, dyes, antioxidants, polysaccharides, and enzymes that can be explored as substitutes for synthetic food additives. Research in this area has increased the yields of metabolites for industrial applications through improving fermentation conditions, application of metabolic engineering techniques, and fungal genetic manipulation. Several modern hyphenated techniques have impressively increased the rate of research in this area, enabling the analysis of a large number of species and fermentative conditions. This review thus focuses on summarizing the nutritional, pharmacological, and economic importance of fungi and their metabolites resulting from applications in the aforementioned areas, examples of modern techniques for optimizing the production of fungi and their metabolites, and methodologies for the identification and analysis of these compounds.
Collapse
Affiliation(s)
- Jacqueline A. Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bianca V. R. Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bruna de A. Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Christiano P. Guirlanda
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| | - Marília A. F. Moura
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| |
Collapse
|
7
|
Microbial Transformation of Flavonoids by Isaria fumosorosea ACCC 37814. Molecules 2019; 24:molecules24061028. [PMID: 30875913 PMCID: PMC6471136 DOI: 10.3390/molecules24061028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is an efficient strategy to modulate the solubility, stability, bioavailability and bioactivity of drug-like natural products. Biological methods, such as whole-cell biocatalyst, promise a simple but highly effective approach to glycosylate biologically active small molecules with remarkable regio- and stereo-selectivity. Herein, we use the entomopathogenic filamentous fungus Isaria fumosorosea ACCC 37814 to biotransform a panel of phenolic natural products, including flavonoids and anthraquinone, into their glycosides. Six new flavonoid (4-O-methyl)glucopyranosides are obtained and structurally characterized using high resolution mass and nuclear magnetic resonance spectroscopic techniques. These compounds further expand the structural diversity of flavonoid glycosides and may be used in biological study.
Collapse
|
8
|
Weng Q, Zhang X, Chen W, Hu Q. Secondary Metabolites and the Risks of Isaria fumosorosea and Isaria farinosa. Molecules 2019; 24:E664. [PMID: 30781844 PMCID: PMC6412548 DOI: 10.3390/molecules24040664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Isaria fumosorosea and Isaria farinosa are important entomopathogenic fungi with a worldwide distribution and multiple host insects. However, the concerns about the safety risks of myco-pesticides have been attracting the attention of researchers and consumers. Secondary metabolites (SMs), especially the mycotoxins, closely affect the biosafety of Isaria myco-insecticides. In the last forty years, more than seventy SMs were identified and isolated from I. fumosorosea and I. farinose. The SMs of I. fumosorosea include the mycotoxins of non-ribosomal peptides (NRPs) (beauvericin and beauverolides), terpenes (trichocaranes and fumosorinone), lactone compounds (cepharosporolides), acids (dipicolinic acid and oxalic acid), etc. Meanwhile, the NRP mycotoxins (cycloaspeptides) and the terpene compounds (farinosones and militarinones) are the main SMs in I. farinosa. Although several researches reported the two Isaria have promised biosafety, the bioactivities and the safety risks of their SMs have not been studied in detail so far. However, based on existing knowledge, most SMs (i.e., mycotoxins) do not come from Isaria myco-insecticide itself, but are from the host insects infected by Isaria fungi, because only the hosts can provide the conditions for fungal proliferation. Furthermore, the SMs from Isaria fungi have a very limited possibility of entering into environments because many SMs are decomposed in insect cadavers. The biosafety of Isaria myco-insecticides and their SMs/mycotoxins are being monitored. Of course, SMs safety risks of Isaria myco-insecticides need further research.
Collapse
Affiliation(s)
- Qunfang Weng
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaofeng Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|