1
|
Zhou YL, Bi DW, Sun XR, Pang WH, Li R, Qiu X, Zhang RH, Zhang XJ, Li XL, Xiao WL. Chemical constituents from the twigs and leaves of Picrasma quassioides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:968-975. [PMID: 36729583 DOI: 10.1080/10286020.2023.2173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Two new compounds, including a norsesquiterpenoid, annuionone H (1), and a quassinoid, picraqualide G (2), along with eleven known compounds (3-13), were isolated from the twigs and leaves of Picrasma quassioides. Comprehensive spectroscopic analyses and NMR calculation with DP4+ analysis were used to identify their structures. Moreover, of all these compounds, compound 4 showed a week inhibition rate in the anti-inflammatory screening results against mouse macrophage J774A.1 cell.
Collapse
Affiliation(s)
- Ya-Ling Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - De-Wen Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Xiao-Rong Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Wen-Hui Pang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Rui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Xiong Qiu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products; School of Chemical Science and Technology and School of Medicine, Yunnan University, Kunming 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Tao L, Xu S, Zhang Z, Li Y, Yang J, Gu W, Yi P, Hao X, Yuan C. Bioassay-guided isolation of α-Glucosidase inhibitory constituents from Hypericum sampsonii. Chin J Nat Med 2023; 21:443-453. [PMID: 37407175 DOI: 10.1016/s1875-5364(23)60472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 07/07/2023]
Abstract
This study employed the α-glucosidase inhibitory activity model as an anti-diabetic assay and implemented a bioactivity-guided isolation strategy to identify novel natural compounds with potential therapeutic properties. Hypericum sampsoniiwas investigated, leading to the isolation of two highly modified seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2), eight phenolic derivatives (3-10), and four terpene derivatives (11-14). The structures of compounds 1 and 2, featuring an unprecedented octahydro-2H-chromen-2-one ring system, were fully characterized using extensive spectroscopic data and quantum chemistry calculations. Six compounds (1, 5-7, 9, and 14) exhibited potential inhibitory effects against α-glucosidase, with IC50 values ranging from 0.050 ± 0.0016 to 366.70 ± 11.08 μg·mL-1. Notably, compound 5 (0.050 ± 0.0016 μg·mL-1) was identified as the most potential α-glucosidase inhibitor, with an inhibitory effect about 6900 times stronger than the positive control, acarbose (IC50 = 346.63 ± 15.65 μg·mL-1). A docking study was conducted to predict molecular interactions between two compounds (1 and 5) and α-glucosidase, and the hypothetical biosynthetic pathways of the two unprecedented seco-PPAPs were proposed.
Collapse
Affiliation(s)
- Linlan Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Shuangyu Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Zizhen Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
3
|
Dai P, Chen S, Wang M, Ma H, Liu F, Lin C, Zhu C. β-Carboline alkaloids from Picrasma quassioides and their 3D-QSAR study on anti-inflammation in LPS-induced RAW 264.7 cells. Fitoterapia 2023; 166:105437. [PMID: 36693439 DOI: 10.1016/j.fitote.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Two new β-carboline alkaloids (1-2), 1-pyrrolidone propionyl-β-carboline (1) and 1-(3-hydroxy-2-oxopiperidine-1-ethyl)-4,8-dimethoxyl-β-carboline (2), named kumujantine W and J respectively, together with ten known compounds (3-12) were isolated from the stems of Picrasma quassioides (D. Don) Benn. Their structures were elucidated from spectral data including 1D and 2D NMR, UV, IR, HR-ESI-MS spectroscopic analysis and ECD calculations as well as by comparison to the reference databases or literature. The anti-inflammatory effects of these alkaloids (1-12) and six other β-carboline alkaloids (13-18) in LPS-induced RAW 264.7 cells were evaluated by measuring nitric oxide (NO) concentrations. Among them, compounds 1, 3, 6, 15, and 17 could inhibit the secretion of NO, displaying significant anti-inflammatory activity without affecting cell viability in vitro, and 3D-QSAR analysis further revealed the influence of groups on the activity in β-carboline alkaloids.
Collapse
Affiliation(s)
- Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Huanhuan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Bai M, Zhang Q, Hou ZL, Li C, Zhou WY, Yao GD, Huang XX, Song SJ. Chemical constituents from Solanum nigrum and their neuroprotective activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:703-712. [PMID: 34585635 DOI: 10.1080/10286020.2021.1978987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Ten compounds (1-10) including four new compounds (1-4) and six known compounds (5-10) were isolated from Solanum nigrum. Their structures were elucidated on the basis of spectroscopic data, gauge-including atomic orbital (GIAO) calculation of NMR data, DP4+ probability analysis and comparison of their experimental and calculated electronic circular dichroism (ECD) spectral data. All the isolated compounds were tested for their neuroprotective activities against H2O2-induced damage in SH-SY5Y cells. Among them, compounds 1, 5 and 7 displayed moderate neuroprotective effects.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuan Li
- General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Phytochemical investigation on the leaves of Picrasma quassioides (D.Don) Benn. and the chemophenetics significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|