1
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2024. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
2
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
3
|
Orabi MAA, Alshahrani MM, Sayed AM, Abouelela ME, Shaaban KA, Abdel-Sattar ES. Identification of Potential Leishmania N-Myristoyltransferase Inhibitors from Withania somnifera (L.) Dunal: A Molecular Docking and Molecular Dynamics Investigation. Metabolites 2023; 13:metabo13010093. [PMID: 36677018 PMCID: PMC9861338 DOI: 10.3390/metabo13010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
- Correspondence: or ; Tel.: +966-557398835
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
4
|
The Soft Coral Sarcophyton trocheliophorum: A Warehouse of Terpenoids with Structural and Pharmacological Diversity. Mar Drugs 2022; 21:md21010030. [PMID: 36662203 PMCID: PMC9865811 DOI: 10.3390/md21010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The soft coral Sarcophyton trocheliophorum, which was frequently encountered on Indo-Pacific and Red Sea coral reefs, furnished a wealth of secondary metabolites. Notably, terpenoids dominated the chemical profile of this species. In this review, we summarized the discovery of 156 terpenoids from the soft coral S. trocheliophorum specimens in different geographical areas. The structures comprised 13 terpenoidal classes with various functionalities. We covered the era from the first report of S. trocheliophorum-derived metabolites in 1976 up to October 2022. The biological effects of these chemical compositions on a vast array of potential pharmacological activities such as protein tyrosine phosphatase 1B (PTP1B) inhibitory, neuroprotective, cytotoxic, anti-inflammatory, antibacterial, antivirus, and immunomodulatory activities were also presented. This review also revealed an immense demand to explore the terpene biosynthetic gene clusters of this species besides the chemo- and bio-investigations.
Collapse
|
5
|
Abdelkarem FM, Nafady AM, Allam AE, Mostafa MAH, Al Haidari RA, Hassan HA, Zaki MEA, Assaf HK, Kamel MR, Zidan SAH, Sayed AM, Shimizu K. A Comprehensive In Silico Study of New Metabolites from Heteroxenia fuscescens with SARS-CoV-2 Inhibitory Activity. Molecules 2022; 27:molecules27217369. [PMID: 36364194 PMCID: PMC9657797 DOI: 10.3390/molecules27217369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical investigation of the total extract of the Egyptian soft coral Heteroxenia fuscescens, led to the isolation of eight compounds, including two new metabolites, sesquiterpene fusceterpene A (1) and a sterol fuscesterol A (4), along with six known compounds. The structures of 1–8 were elucidated via intensive studies of their 1D, 2D-NMR, and HR-MS analyses, as well as a comparison of their spectral data with those mentioned in the literature. Subsequent comprehensive in-silico-based investigations against almost all viral proteins, including those of the new variants, e.g., Omicron, revealed the most probable target for these isolated compounds, which was found to be Mpro. Additionally, the dynamic modes of interaction of the putatively active compounds were highlighted, depending on 50-ns-long MDS. In conclusion, the structural information provided in the current investigation highlights the antiviral potential of H. fuscescens metabolites with 3β,5α,6β-trihydroxy steroids with different nuclei against SARS-CoV-2, including newly widespread variants.
Collapse
Affiliation(s)
- Fahd M. Abdelkarem
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alaa M. Nafady
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Rwaida A. Al Haidari
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed R. Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sabry A. H. Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|