1
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Chingizova EA, Menchinskaya ES, Zelepuga EA, Panina EG, Stepanov VG, Kalinin VI, Dmitrenok PS. Sulfated Triterpene Glycosides from the Far Eastern Sea Cucumber Cucumaria djakonovi: Djakonoviosides C 1, D 1, E 1, and F 1; Cytotoxicity against Human Breast Cancer Cell Lines; Quantitative Structure-Activity Relationships. Mar Drugs 2023; 21:602. [PMID: 38132923 PMCID: PMC10744391 DOI: 10.3390/md21120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Four new mono- and trisulfated triterpene penta- and tetraosides, djakonoviosides C1 (1), D1 (2), E1 (3), and F1 (4) were isolated from the Far Eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida), along with six known glycosides found earlier in other Cucumaria species. The structures of unreported compounds were established on the basis of extensive analysis of 1D and 2D NMR spectra as well as by HR-ESI-MS data. The set of compounds contains six different types of carbohydrate chains including two new ones. Thus, djakonovioside C1 (1) is characterized by xylose as the second residue, that was a branchpoint in the pentasaccharide chain. Meanwhile, only quinovose and rarely glucose have been found earlier in pentasaccharide chains branched at C-2 of the second sugar unit. Djakonovioside E1 (3) is characterized by a tetrasaccharide trisulfated chain, with glucose as the second residue. So, in the series of isolated glycosides, three types of sugars in the second position were presented: the most common, quinovose-in six compounds; glucose-in three substances; and the rare xylose-in one glycoside. The set of aglycones was composed of holostane- and non-holostane-type polycyclic systems; the latter comprised normal and reduced side chains. Noticeably, isokoreoside A (9), isolated from C. djakonovi, was a single glycoside having a 9(11)-double bond, indicating two oxidosqualenecyclases are operating in the process of the biosynthesis of aglycones. Some of the glycosides from C. djakonovi, which were characterized by pentasaccharide branched chains containing one to three sulfate groups, are chemotaxonomic features of the representatives of the genus Cucumaria. The assortment of sugar parts of Cucumaria's glycosides was broadened with previously undescribed penta- and tetrasaccharide moieties. The metabolic network of sugar parts and aglycones is constructed based on biogenetic relationships. The cytotoxic action of compounds 1-10, isolated from C. djakonovi, against human breast cancer cell lines was investigated along with the hemolytic activity. Erythrocytes were, as usual, more sensitive to the membranolytic action of the glycosides than cancer cells. The triple-negative breast cancer MDA-MB-231 cell line was more vulnerable to the action of glycosides in comparison with the other tested cancer cells, while the MCF-7 cell line was less susceptible to cytotoxic action. Djakonovioside E1 (3) demonstrated selective action against ER-positive MCF-7 and triple-negative MDA-MB-231 cell lines, while the toxic effect in relation to normal mammary epithelial cells (MCF-10A) was absent. Cucumarioside A2-5 (6) inhibited the formation and growth of colonies of cancer cells to 44% and tumor cell migration to 85% of the control. Quantitative structure-activity relationships (QSAR) were calculated on the basis of the correlational analysis of the physicochemical properties and structural features of the glycosidic molecules and their membranolytic activity. QSAR revealed the extremely complex nature of such relationships, but these calculations correlated well with the observed SAR.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Elena A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Elena G. Panina
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia; (E.G.P.); (V.G.S.)
| | - Vadim G. Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia; (E.G.P.); (V.G.S.)
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (V.I.K.)
| |
Collapse
|
2
|
Xue YY, Lu YY, Sun GQ, Fang F, Ji YQ, Tang HF, Qiu PC, Cheng G. CN-3 increases TMZ sensitivity and induces ROS-dependent apoptosis and autophagy in TMZ-resistance glioblastoma. J Biochem Mol Toxicol 2021; 36:e22973. [PMID: 34967073 DOI: 10.1002/jbt.22973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Many glioma patients develop resistance to temozolomide (TMZ) treatment, resulting in reduced efficacy and survival rates. TMZ-resistant cell lines SHG44R and U87R, which highly express O6 -methylguanine DNA methyltransferase (MGMT) and P-gp, were established. CN-3, a new asterosaponin, showed cytotoxic effects on TMZ-resistant cells in a dose- and time-dependent manner via reactive oxygen species (ROS)-mediated apoptosis and autophagy. Transmission electron microscopy and monodansylcadaverine (MDC) staining showed turgidity of the mitochondria and autophagosomes in CN-3-treated SHG44R and U87R cells. The autophagy inhibitor 3-methyladenine was used to confirm the important role of autophagy in CN-3 cytotoxicity in TMZ-resistant cells. The ROS scavenger N-acetyl- l-cysteine (NAC) attenuated the levels of ROS induced by CN-3 and, therefore, rescued the CN-3 cytotoxic effect on the viability of SHG44R and U87R cells by Cell Counting Kit-8 assays and JuLI-Stage videos. MDC staining also confirmed that NAC rescued an autophagosome increase in CN-3-treated SHG44R and U87R cells. Western blotting revealed that CN-3 increased Bax, cleaved-caspase 3, cytochrome C, PARP-1, LC3-Ⅱ, and Beclin1, and decreased P-AKT, Bcl-2, and p62. Further rescue experiments revealed that CN-3 induced apoptosis and autophagy through ROS-mediated cytochrome C, cleaved-caspase 3, Bcl-2, P-AKT, PARP-1, and LC3-Ⅱ. In addition, CN-3 promoted SHG44R and U87R cells sensitive to TMZ by reducing the expression of P-gp, MGMT, and nuclear factor kappa B p65, and it had a synergistic cytotoxic effect with TMZ. Moreover, CN-3 disrupted the natural cycle arrest and inhibited the migration of SHG44R and U87R cells by promoting cyclin E1 and D1, and by decreasing P21, P27, N-cadherin, β-catenin, transforming growth factor beta 1, and Smad2.
Collapse
Affiliation(s)
- Yu-Ye Xue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang-Qiang Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fei Fang
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Yu-Qiang Ji
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Hai-Feng Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Qiu PC, Lu YY, Zhang S, Li H, Bao H, Ji YQ, Fang F, Tang HF, Cheng G. Reduction of SCUBE3 by a new marine-derived asterosaponin leads to arrest of glioma cells in G1/S. Oncogenesis 2020; 9:71. [PMID: 32764572 PMCID: PMC7411020 DOI: 10.1038/s41389-020-00252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Many saponins are characterized as exhibiting a wide spectrum of antitumor activities at low concentrations. Most of the previous studies that aimed to understand the mechanisms underlying anticancer saponins have focused on numerous classical signaling pathways. However, at the oncogene level, little is known about the action of saponins, especially asterosaponin. In this study, CN-3, a new asterosaponin isolated from the starfish Culcita novaeguineae, decreased the proliferation of U87 and U251 cells at low doses in a dose- and time-dependent manner. Microarray analysis revealed CN-3 significantly induced the differential expression of 661 genes that are related to its antiglioma effect in U251. Nine downregulated genes (SCUBE3, PSD4, PGM2L1, ACSL3, PRICKLE1, ABI3BP, STON1, EDIL3, and KCTD12) were selected, for further verification of their low expression. Then, shRNA transfection and high-content screening were performed and significantly decreased U251 cell proliferation rate was only observed for the SCUBE3 knockdown. qPCR confirmed SCUBE3 was highly expressed in U251 and U87 cells, and had medium expression levels in U373 cells. Real-time cellular analysis using iCELLigence demonstrated that SCUBE3 is an oncogene in U251 and U87 cells, with knockdown of SCUBE3 inhibiting U251 and U87 cell proliferation while, conversely, SCUBE3 overexpression promoted their proliferation. Afterward, SCUBE3 protein was found to have high expression in primary glioma specimens from patients examined by immunohistochemistry but low expression in normal brain. PathScan ELISA analysis in conjunction with TEM observation demonstrated that the effect of SCUBE3 knockdown in U251 does not appear to be related to the induction of apoptosis. Employing CCK-8, iCELLigence, flow cytometry, western blotting, and shRNA transfection (knockdown and overexpression) experiments, we reveal that the reduction of SCUBE3 expression, induced by CN-3, mediated both inhibition and G1/S arrest of U251 via the Akt/p-Akt/p53/p21/p27/E2F1 pathway.
Collapse
Affiliation(s)
- Peng-Cheng Qiu
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Yun-Yang Lu
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Shan Zhang
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China.,School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, People's Republic of China
| | - Hua Li
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Han Bao
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Yu-Qiang Ji
- Central Laboratory of Xi'an No.1 Hospital, 710002, Xi'an, People's Republic of China
| | - Fei Fang
- Central Laboratory of Xi'an No.1 Hospital, 710002, Xi'an, People's Republic of China
| | - Hai-Feng Tang
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China.
| | - Guang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Air Force Medical University, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
4
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Ermakova SP, Malyarenko OS, Dautov SS, Kalinin VI. Structures and Bioactivities of Quadrangularisosides A, A 1, B, B 1, B 2, C, C 1, D, D 1-D 4, and E from the Sea Cucumber Colochirus quadrangularis: The First Discovery of the Glycosides, Sulfated by C-4 of the Terminal 3- O-Methylglucose Residue. Synergetic Effect on Colony Formation of Tumor HT-29 Cells of these Glycosides with Radioactive Irradiation. Mar Drugs 2020; 18:md18080394. [PMID: 32731458 PMCID: PMC7460491 DOI: 10.3390/md18080394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023] Open
Abstract
Thirteen new mono-, di-, and trisulfated triterpene glycosides, quadrangularisosides A-D4 (1-13) have been isolated from the sea cucumber Colochirus quadrangularis, which was collected in Vietnamese waters. The structures of these glycosides were established by 2D NMR spectroscopy and HR-ESI (High Resolution Electrospray Ionization) mass spectrometry. The novel carbohydrate moieties of quadrangularisosides D-D4 (8-12), belonging to the group D, and quadrangularisoside E (13) contain three sulfate groups, with one of them occupying an unusual position-at C(4) of terminal 3-O-methylglucose residue. Quadrangularisosides A (1) and D3 (11) as well as quadrangularisosides A1 (2) and D4 (12) are characterized by the new aglycones having 25-hydroperoxyl or 24-hydroperoxyl groups in their side chains, respectively. The cytotoxic activities of compounds 1-13 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, erythrocytes, and human colorectal adenocarcinoma HT-29 cells were studied. All the compounds were rather strong hemolytics. The structural features that most affect the bioactivity of the glycosides are the presence of hydroperoxy groups in the side chains and the quantity of sulfate groups. The membranolytic activity of monosulfated quadrangularisosides of group A (1, 2) against Neuro 2a, JB-6 cells, and erythrocytes was relatively weak due to the availability of the hydroperoxyl group, whereas trisulfated quadrangularisosides D3 (11) and D4 (12) with the same aglycones as 1, 2 were the least active compounds in the series due to the combination of these two structural peculiarities. The erythrocytes were more sensitive to the action of the glycosides than Neuro 2a or JB-6 cells, but the structure-activity relationships observed for glycosides 1-13 were similar in the three cell lines investigated. The compounds 3-5, 8, and 9 effectively suppressed the cell viability of HT-29 cells. Quadrangularisosides A1 (2), C (6), C1 (7), and E (13) possessed strong inhibitory activity on colony formation in HT-29 cells. Due to the synergic effects of these glycosides (0.02 μM) and radioactive irradiation (1 Gy), a decreasing of number of colonies was detected. Glycosides 1, 3, and 9 enhanced the effect of radiation by about 30%.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
- Correspondence: ; Tel.: +7(423)2-31-40-50
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pelageya V. Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Salim Sh. Dautov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Street, Vladivostok 690041, Russia;
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| |
Collapse
|
5
|
Zhang XM, Li XB, Zhang SS, He QX, Hou HR, Dang L, Guo JL, Chen YF, Yu T, Peng DJ, Han LW, Liu KC. LC-MS/MS Identification of Novel Saponins from the Viscera of Sea Cucumber Apostichopus japonicus. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2454-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Mondol MAM, Shin HJ, Rahman MA, Islam MT. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties. Mar Drugs 2017; 15:md15100317. [PMID: 29039760 PMCID: PMC5666425 DOI: 10.3390/md15100317] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/29/2023] Open
Abstract
Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.
Collapse
Affiliation(s)
| | - Hee Jae Shin
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan 427-744, Korea.
| | - M Aminur Rahman
- World Fisheries University Pilot Programme, Pukyong National University (PKNU), 45 Yongso-ro, Nam-gu, Busan 48513, Korea.
| | - Mohamad Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
7
|
Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs 2017; 35:820-826. [PMID: 28920157 PMCID: PMC5694523 DOI: 10.1007/s10637-017-0505-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The aim of cancer therapy is to specifically eradicate tumor cells while causing minimal damage to normal tissues and minimal side-effects. Because of this, the use of natural substances with low toxicity is a good option. Sea cucumbers are one of many potential marine animals that contain valuable nutrients and medicinal properties. The medicinal value of sea cucumbers is attributed to the presence of bioactive agents with promising biological and pharmacological properties that include cytotoxic activity, induction of apoptosis, cell cycle arrest, inhibition of tumor growth, anti-metastatic and anti-angiogenic properties, and inhibition of drug resistance. This review discusses the mechanisms of cancer cell death induced by sea cucumber-derived compounds with regard to exploring the potential use of these marine natural products for cancer therapy.
Collapse
|
8
|
Bahrami Y, Franco CMM. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades. Mar Drugs 2016; 14:E147. [PMID: 27527190 PMCID: PMC4999908 DOI: 10.3390/md14080147] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/30/2023] Open
Abstract
Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Medical Biotechnology, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide SA 5042, Australia.
- Centre for Marine Bioproducts Development, Flinders University, Adelaide SA 5042, Australia.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran.
| | - Christopher M M Franco
- Medical Biotechnology, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide SA 5042, Australia.
- Centre for Marine Bioproducts Development, Flinders University, Adelaide SA 5042, Australia.
| |
Collapse
|
9
|
Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov 2016; 11:707-15. [PMID: 27186904 DOI: 10.1080/17460441.2016.1190706] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In contrast to traditional molecular docking, inverse or reverse docking is used for identifying receptors for a given ligand among a large number of receptors. Reverse docking can be used to discover new targets for existing drugs and natural compounds, explain polypharmacology and the molecular mechanism of a substance, find alternative indications of drugs through drug repositioning, and detecting adverse drug reactions and drug toxicity. AREAS COVERED In this review, the authors examine how reverse docking methods have evolved over the past fifteen years and how they have been used for target identification and related applications for drug discovery. They discuss various aspects of target databases, reverse docking tools and servers. EXPERT OPINION There are several issues related to reverse docking methods such as target structure dataset construction, computational efficiency, how to include receptor flexibility, and most importantly, how to properly normalize the docking scores. In order for reverse docking to become a truly useful tool for the drug discovery, these issues need to be adequately resolved.
Collapse
Affiliation(s)
- Aeri Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Kyoungyeul Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Dongsup Kim
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| |
Collapse
|
10
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Kalinin VI, Yurchenko EA, Dolmatov IY. Colochirosides A 1, A 2, A 3, and D, Four Novel Sulfated Triterpene Glycosides from the Sea Cucumber Colochirus Robustus (Cucumariidae, Dendrochirotida). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four new triterpene glycosides, colochirosides A1 (1), A2 (2), A3 (3) and D (4), have been isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Structures of the glycosides have been elucidated by 2D NMR spectroscopy and mass-spectrometry. Colochiroside D (4) has a new type of carbohydrate chain having the only sulfate group attached to C-6 of the third (glucose) monosaccharide residue. Cytotoxic activities of glycosides 1–4 against the ascite form of mouse Ehrlich carcinoma cells and hemolytic activity against mouse erythrocytes have been studied. Hemolytic activity of the glycosides was higher than cytotoxic. Glycosides 1, 3 and 4 demonstrated strong effects, whereas compound 2 showed only moderate activity.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V. Andryjaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russian Federation
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| |
Collapse
|
11
|
|
12
|
Colochirosides B 1, B 2, B 3 and C, Novel Sulfated Triterpene Glycosides from the Sea Cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four new triterpene glycosides, colochirosides B1 (1), B2 (2), B3 (3) and C (4) have been isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). Six known earlier glycosides from representatives of two families of the order Dendrochirotida have also been found in C. robustus. Structures of the glycosides have been elucidated by 2D NMR spectroscopy and mass spectrometry. All the glycosides belong to the holostane series and contain tetrasaccharide linear carbohydrate chains with one or two sulfate groups. Cytotoxic activities of glycosides 1-4 against the ascite form of mouse Ehrlich carcinoma cells and hemolytic activities against mouse erythrocytes have been studied. Hemolytic activity of the glycosides was higher than cytotoxic. Glycosides 3 and 4 demonstrated strong effects, whereas compounds 1 and 2 containing the hydroxy-group in the side chains showed moderate hemolytic activity and were not cytotoxic.
Collapse
|
13
|
Silchenko AS, Kalinovsky AI, Dmitrenok PS, Kalinin VI, Mazeika AN, Vorobieva NS, Sanina NM, Kostetsky EY. Cucumarioside E from the Far Eastern Sea Cucumber Cucumaria japonica (Cucumariidae, Dendrochirotida), New Minor Monosulfated Holostane Triterpene Pentaoside with Glucose as the Second Monosaccharide Residue. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New minor triterpene glycoside, cucumarioside E (1) has been isolated from the Far Eastern sea cucumber Cucumaria japonica. The structure of the glycoside was elucidated by 2D-NMR specroscopy and mass-spectrometry. The glycoside has glucose instead of quinovose as the second monosaccharide residue and xylose as third monosaccharide residue that is unique structural feature for triterpene glycosides carbohydrate chains from sea cucumbers belonging to the genus Cucumaria.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Andrey N. Mazeika
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| | - Natalia S. Vorobieva
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| | - Nina M. Sanina
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| | - Edward Y. Kostetsky
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russian Federation
| |
Collapse
|
14
|
Alsaad AMS, Fox C, Koren G. Toxicology and teratology of the active ingredients of professional therapy MuscleCare products during pregnancy and lactation: a systematic review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:40. [PMID: 25879694 PMCID: PMC4356057 DOI: 10.1186/s12906-015-0585-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/24/2015] [Indexed: 12/01/2022]
Abstract
Background The rates of muscle aches, sprains, and inflammation are significantly increased during pregnancy. However, women are afraid to use systemic analgesics due to perceptions of fetal risks. Thus, topical products are important alternatives to consider for those women. Of interest, Professional Therapy MuscleCare (PTMC) has shown to be effective in alleviating the myofascial pain as reported in a randomized, placebo-controlled double-blinded comparative clinical study of five topical analgesics. However, to date, there is no complete review or long-term safety studies on the safety of these products during pregnancy and lactation. Thus, the aim of this article was to review toxicological, developmental, and reproductive effects associated with the use of PTMC products. Methods We performed a systematic review on safety of PTMC from all toxicological articles investigating the effects of PTMC’s ingredients. This search was conducted through medical and toxicological databases including, Web of Science, EMBASE, Medline, and Micromedix. Both reported and theoretical adverse effects were extensively reviewed. Results Of the 1500 publications reviewed, 100 papers were retrieved and included in the review. Although some ingredients in PTMC products might cause adverse reproductive effects at high systemic doses, these doses are hundreds to thousands fold greater than those systemically available from topical use at the recommended maximum dose (i.e. 10 g/day). Conclusions This study provides evidence that, when used as indicated, PTMC is apparently safe for pregnant women and their unborn babies as well as for breastfed infants.
Collapse
|
15
|
Structure elucidation of new acetylated saponins, Lessoniosides A, B, C, D, and E, and non-acetylated saponins, Lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2015; 13:597-617. [PMID: 25603350 PMCID: PMC4306954 DOI: 10.3390/md13010597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022] Open
Abstract
Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core), and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins.
Collapse
|
16
|
Park JI, Bae HR, Kim CG, Stonik VA, Kwak JY. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front Chem 2014; 2:77. [PMID: 25250309 PMCID: PMC4159031 DOI: 10.3389/fchem.2014.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022] Open
Abstract
Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
Collapse
Affiliation(s)
- Joo-In Park
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
| | - Hae-Rahn Bae
- Department of Physiology, School of Medicine, Dong-A UniversityBusan, South Korea
| | - Chang Gun Kim
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| | - Valentin A. Stonik
- The Laboratory of Chemistry of Marine Natural Products, G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of ScienceVladivostok, Russia
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| |
Collapse
|
17
|
Bahrami Y, Zhang W, Chataway T, Franco C. Structure elucidation of five novel isomeric saponins from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2014; 12:4439-73. [PMID: 25110919 PMCID: PMC4145325 DOI: 10.3390/md12084439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. A high performance centrifugal partition chromatography (HPCPC) was applied to the saponin-enriched mixture to obtain saponins with high purity. The resultant purified saponins were profiled using MALDI-MS/MS and ESI-MS/MS which revealed the structure of isomeric saponins to contain multiple aglycones and/or sugar residues. We have elucidated the structure of five novel saponins, Holothurins D/E and Holothurinosides X/Y/Z, along with seven reported triterpene glycosides, including sulfated and non-sulfated saponins containing a range of aglycones and sugar moieties, from the viscera of H. lessoni. The abundance of novel compounds from this species holds promise for biotechnological applications.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Wei Zhang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Tim Chataway
- Flinders Proteomics Facility, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Chris Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
18
|
Bahrami Y, Zhang W, Franco C. Discovery of novel saponins from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2014; 12:2633-67. [PMID: 24821624 PMCID: PMC4052309 DOI: 10.3390/md12052633] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers, sometimes referred to as marine ginseng, produce numerous compounds with diverse functions and are potential sources of active ingredients for agricultural, nutraceutical, pharmaceutical and cosmeceutical products. We examined the viscera of an Australian sea cucumber Holothuria lessoni Massin et al. 2009, for novel bioactive compounds, with an emphasis on the triterpene glycosides, saponins. The viscera were extracted with 70% ethanol, and this extract was purified by a liquid-liquid partition process and column chromatography, followed by isobutanol extraction. The isobutanol saponin-enriched mixture was further purified by high performance centrifugal partition chromatography (HPCPC) with high purity and recovery. The resultant purified polar samples were analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS and electrospray ionization mass spectrometry (ESI-MS)/MS to identify saponins and characterize their molecular structures. As a result, at least 39 new saponins were identified in the viscera of H. lessoni with a high structural diversity, and another 36 reported triterpene glycosides, containing different aglycones and sugar moieties. Viscera samples have provided a higher diversity and yield of compounds than observed from the body wall. The high structural diversity and novelty of saponins from H. lessoni with potential functional activities presents a great opportunity to exploit their applications for industrial, agricultural and pharmaceutical use.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| | - Wei Zhang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| | - Chris Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| |
Collapse
|
19
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Kalinin VI, Yurchenko EA, Dautov SS. Structures of Violaceusosides C, D, E and G, Sulfated Triterpene Glycosides from the Sea Cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four new triterpene glycosides, violaceusosides C (1), D (2), E (3) and G (4) have been isolated from the sea cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Eight known glycosides, DS-holothurin A and holothurinoside A, isolated earlier from Holothuria forskalii (order Aspidochirotida); and violaceuside A, lefevreoside C, philinopside E, intercedenside B, violaceuside II and liovilloside A isolated earlier from representatives of the family Cucumariidae, order Dendrochirotida have also been found in P. violaceus. The chemical structures of the glycosides were elucidated by 2D NMR spectroscopy and mass spectrometry. Violaceusosides C (1), D (2), E (3) and G (4) have holostane-type aglycones and tetrasaccharide linear carbohydrate chains differing in the sugar composition and the number and position of sulfate groups. Violaceusosides E (3) and G (4) are characterized by the presence of a sulfate group at C-3 of the quinovose residue that is very rare among sea cucumber glycosides. Cytotoxic activities of the glycosides 1–4 against cells of the ascite form of mouse Ehrlich carcinoma and hemolytic activities against mouse erythrocytes have been studied. Violaceusosides C (1) and D (2) demonstrated moderate cytotoxic and hemolytic effects, while violaceusosides E (3) and G (4) have more powerful activities.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V. Andryjaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Salim S. Dautov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russian Federation
| |
Collapse
|
20
|
Li YX, Himaya SWA, Kim SK. Triterpenoids of marine origin as anti-cancer agents. Molecules 2013; 18:7886-909. [PMID: 23884125 PMCID: PMC6269678 DOI: 10.3390/molecules18077886] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 06/10/2013] [Accepted: 06/27/2013] [Indexed: 01/11/2023] Open
Abstract
Triterpenoids are the most abundant secondary metabolites present in marine organisms, such as marine sponges, sea cucumbers, marine algae and marine-derived fungi. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells, as well as anticancer efficacy in preclinical animal models. In this review efforts have been taken to review the structural features and the potential use of triterpenoids of marine origin to be used in the pharmaceutical industry as potential anti-cancer drug leads.
Collapse
Affiliation(s)
- Yong-Xin Li
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - S. W. A. Himaya
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82-51-629-7099
| |
Collapse
|
21
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Martyyas EA, Kalinin VI, Jayasandhya P, Rajan GC, Padmakumar KP. Structures and Biological Activities of Typicosides A 1, A 2, B 1, C 1 and C 2, Triterpene Glycosides from the Sea Cucumber Actinocucumis typica. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Five new minor triterpene glycosides, typicosides A1 (1), A2 (2), B1 (3), C1 (4) and C2 (5), along with two known glycosides, intercedenside A and holothurin B3, have been isolated from the sea cucumber Actinocucumis typica. Structures of the glycosides were elucidated by 2D NMR spectroscopy and MS. Glycosides 1–5 are linear mono- and disulfated tetraosides differing from each other in both aglycone structures and monosaccharide composition of the carbohydrate chains. Typicosides A1 (1) and A2 (2) have identical monosulfated carbohydrate moieties with a xylose residue as the third monosaccharide unit and differ from each other in aglycon structures. Typicoside B1 (3) has glucose as the third monosaccharide residue. Typicosides C1 (4) and C2 (5) contain the same disulfated carbohydrate chains and differ from each other in structures of aglycone side chains. Antifungal activity of glycosides 1–5 against three species of fungi along with cytotoxic activity against mouse spleen lymphocytes and mouse Ehrlich carcinoma cells (ascite form), as well as hemolytic activities against mouse erythrocytes have been studied. All new glycosides, except for typicoside C1 (4), containing a hydroxy-group in the aglycone side chain, demonstrate rather strong hemolytic and cytotoxic activities.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V. Andryjaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Ekaterina A. Martyyas
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - P. Jayasandhya
- Center for Marine Biodiversity, University of Kerala, Kariavatton, Thiruvananthapuram, 695581, Kerala, India
| | - Gigi C. Rajan
- Center for Marine Biodiversity, University of Kerala, Kariavatton, Thiruvananthapuram, 695581, Kerala, India
| | - Krishna P. Padmakumar
- Center for Marine Biodiversity, University of Kerala, Kariavatton, Thiruvananthapuram, 695581, Kerala, India
| |
Collapse
|
22
|
Kim SK, Himaya SWA. Triterpene glycosides from sea cucumbers and their biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:297-319. [PMID: 22361196 DOI: 10.1016/b978-0-12-416003-3.00020-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triterpenoid glycosides are abundantly present in sea cucumbers, which are responsible for the toxicity of these echinoderms. More than 100 triterpenoid glycosides have been isolated in the past 20 years and those are grouped into four main structural categories considering their aglycone structure: 3β-hydroxyholost-9(ll)-ene aglycone skeleton, 3β-hydroxyholost-7-ene skeleton, other holostane type aglycones and nonholostane aglycone. Most of the triterpenoid glycosides are found to be possessing potential biological activities. Among the biological activities, anticancer activity and antiviral activity are the most widely studied areas. In this communication, we have presented a general view of the structural characteristics of triterpenoid glycosides and their major biological activities. The structural significance and the application limitations of triterpene glycosides are also discussed.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|
23
|
Himaya SWA, Ryu B, Qian ZJ, Kim SK. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:68-75. [PMID: 21787631 DOI: 10.1016/j.etap.2010.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/23/2010] [Accepted: 03/28/2010] [Indexed: 05/31/2023]
Abstract
The sea cucumber Stichopus japonicus is an important food and traditional medicine in Asian countries. However, ethyl acetate solvent fraction of S. japonicus (SCEA-F) is largely unknown for its anti-inflammatory activity and related molecular mechanisms. In this study, effect of SCEA-F on inflammation was investigated in LPS stimulated RAW264.7 cells. SCEA-F significantly inhibited the productions of NO and PGE(2) by inhibiting iNOS and COX-2 at their protein and gene levels. The production and the gene transcription of pro-inflammatory cytokines are also inhibited. The responsible molecular signaling for these inhibitory actions was found to be through suppression of the phosphorylation of MAPK molecules; ERK and p38 MAPK. These results indicate that SCEA-F inhibits LPS-induced inflammatory response via blocking of MAPK signaling pathway in murine macrophages, thus demonstrated its in vitro anti-inflammatory potential. Therefore it could be suggested that SCEA-F could be effectively used in functional food preparations.
Collapse
Affiliation(s)
- S W A Himaya
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Han H, Xu QZ, Yi YH, Gong W, Jiao BH. Two new cytotoxic disulfated holostane glycosides from the sea cucumber Pentacta quadrangularis. Chem Biodivers 2010; 7:158-67. [PMID: 20087982 DOI: 10.1002/cbdv.200800324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two new disulfated triterpene glycosides, pentactasides B and C (1 and 2, resp.), were isolated from the sea cucumber Pentacta quadrangularis collected from the South China Sea. Their structures were elucidated by extensive spectral analysis (2D-NMR and MS) and chemical methods. The compounds 1 and 2 possess the same tetrasaccharide moieties with two sulfated groups, but are different in the side chains of the triterpene aglycone. Pentactasides B and C (1 and 2, resp.) showed significant cytotoxicities (IC(50) 0.09-2.30 microM) against different human tumor cell lines.
Collapse
Affiliation(s)
- Hua Han
- College of Animal Sciences, Zhejiang University, 268 Kai-Xuan Road, Hangzhou 310029, P R China
| | | | | | | | | |
Collapse
|
25
|
The Resources, Chemical Structures and Structural Characteristics of Triterpene Glycosides from Sea Cucumbers(Order Dendrochirotida). Chin J Nat Med 2008. [DOI: 10.3724/sp.j.1009.2008.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Abstract
This review covers the isolation and structure determination of triterpenoids including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, isomalabaricanes and saponins. The literature from January 2005 to December 2006 is reviewed and 478 references are cited.
Collapse
|
27
|
Dong P, Xue CH, Du QZ. Separation of two main triterpene glycosides from sea cucumberPearsonothuria graeffeiby high-speed countercurrent chromatography. ACTA CHROMATOGR 2008. [DOI: 10.1556/achrom.20.2008.2.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
29
|
Liu BS, Yi YH, Li L, Zhang SL, Han H, Weng YY, Pan MX. Arguside A: A New Cytotoxic Triterpene Glycoside from the Sea CucumberBohadschia argusJaeger. Chem Biodivers 2007; 4:2845-51. [DOI: 10.1002/cbdv.200790234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|